где
= ; - переход времени от секунд к о.е.Рис. 4 – Модель
Рис. 5 – Четвертый подблок первого суперблока, моделирующий
, ,3. Моделирование взаимоиндуктивностей между фазами
, cos cos cosРис. 6 – Пятый подблок первого суперблока, моделирующий
,4. Моделирование взаимоиндуктивностей между обмоткой возбуждения и фазными обмотками
, . cos cos cosРис. 7 – Шестой подблок первого суперблока, моделирующий
,4. Каждый из подблоков преобразуем в субблок аналогично первым трём подблокам, при этом соединяя одноимённые входы и выходы подблоков.
Рис. 8 – Содержимое первого суперблока
6. Образуем первый суперблок (Sb1).
Рис. 9 – Первый суперблок (Sb1)
II. Реализация 2 - 5 суперблоков
Согласно системе уравнений (2) моделируем потокосцепления, связанные с соответствующими обмотками.
Рис. 10 – Второй суперблок (Sb2)
Рис. 11 – Третий суперблок (Sb3)
Рис. 12 – Четвертый суперблок (Sb4)
Рис. 13 – Пятый суперблок (Sb5)
Преобразуем суперблоки Sb2 - Sb5 в субблоки.
III. Реализация 6 – 8 суперблоков
IV. Реализация девятого суперблока
Согласно той же системе уравнений (1) моделируем ток в обмотке возбуждения.
Рис. 17 – Девятый суперблок, моделирующий ток в обмотке возбуждения (Sb9)
Преобразуем каждый из суперблоков в субблоки и соединяем их одноимённые входы и выходы с предыдущими блоками. Затем аналогичным образом получим суперсуперблок (SSb), на вход которого подаём
и Uf.Рис. 19 – Суперсуперблок SSb
V. Модель СГ в режиме ХХ
Подключив осциллографы к соответствующим выходам SSb, будем наблюдать изменение фазных напряжений и тока в обмотке возбуждения СГ в режиме ХХ. С помощью
объединяем фазные напряжения для просмотра в одной системе координат. Т.к. в данной модели фазные токи равны 0, то это модель СГ в режиме ХХ.