Смекни!
smekni.com

Модернизация Алматинской ТЭЦ-2 путём изменения водно-химического режима системы подготовки подпиточной воды с целью повышения температуры сетевой воды до 140–145 С (стр. 12 из 21)

2. Дисперсный состав золы перед золоуловителем при сжигании Экибастузского угля марки СС и при молотковых мельницах .

Таблица 7.7.1 - Дисперсный состав золы .

Тип золоуловителя Фракция пыли, мкм
>5 >10 >15 >20 >30 >40 >60
Мокрый золоуловитель с коагулятором Вентури h = 96,5 % 94,5 83,5 75 66,6 54,3 46,0 33,8

3. Минимально допустимая температура охлаждаемых газов после золоуловителя t¢¢г = 68 0С.

4. Принимаем для расчёта скорость газов в горловине Uг = 40-70 м/с .

Удельный расход охлаждающей воды q = 0,16 кг/м3 , откуда

q * Uг = 11,2 кг/м2

5. Коэффициент гидравлического сопротивления xУСЛ=0,18 и приняв xС=0,2 находим сопротивления собственных участком трубы Вентури:

где rГ = 0,87 кг/м3 –плотность дымовых газов

Принимаем к установке на один котёл четыре золоулавливающих установки с единичной производительностью по газам VГ=200000 м3/ч, с диаметром уловителя dУЛ=4 м. Сопротивление каплеуловителя определим по формуле:

где xКУ–коэффициент гидравлического сопротивления каплеуловителя,

UВХ=20 м/с–скорости газов во входном патрубке аппарата.

Общее сопротивление установки составляет:

Dh=DhТР+DhКУ=810+392=1202 Па

Выполним тепловой расчёт установки:

а) Параметр=72*10-3. Примем температуру пульпы q¢¢=29-50 0С. Температура орошающей воды q¢=20 0С. Температура охлаждённых газов (зададимся) tг¢¢=70 0С. Тогда по формуле:

б) Средний диаметр капель D0=165*10-6 м. Суммарная поверхность капель:

где q=0,16 кг/м3–удельный расход орошающей воды;

VГО=200*103 м3/ч–объемный расход газов при нормальных условиях.

Г) Количество передаваемого тепла:

Q=α*F*Δt*τ=72*10-3*0,77*106*56=3,1*106 ккал/ч

α–коэффициент теплоотдачи от газов к стенке, Δt=56 0С–температурный напор, τ–время пребывания капли в установке.

д) Температура охлажденных газов

Q=VГОГО *(tГ¢-tГ¢¢), откуда выразим tГ¢¢:

tГ¢¢=140-

,

где СГО=0,32 кДж/м3К–объемная теплоемкость газов.

Расчет степени очистки газов от золы в установке.

а) Труба Вентури

Вычислим безразмерный коэффициент и соответствующие значения неполноты улавливания для каждой фракции золы. По таблице определяем полную длину трубы Вентури

Таблица 7.7.2 - Расчёт степени очистки.

Размерность величины Размер частиц, мкм
0-10 10-20 20-30 30-40 40-50
0,186 0,177 0,165 0,151 0,124
Безразмерный комплекс 1,478 1,407 1,311 1,200 0,985
1-h¢i 0,19 0,22 0,231 0,26 0,38

По значению

определяется безразмерный комплекс
, где L-полная длина трубы Вентури в метрах. Поэтому безразмерному комплексу определяется 1-h¢i. Общая неполнота улавливания золы в трубе Вентури по формуле:

e1=1-h¢i =S Ф¢i * (1-h¢i )

где Ф¢i-доля каждой фракции в летучей золе

1-h¢i=0,15*0,19+0,46*0,22+0,21*0,231+0,08*0,26+0,067*0,38=0,225

б) Каплеуловитель

Дисперсный состав на входе в каплеуловитель рассчитывается по формуле:

Фi=

Результат расчета по этой формуле приведен в таблице 7.7.3.

Таблица 7.7.3 - Дисперсный состав проскока.

Величина частиц, мкм 0-10 10-20 20-30 30-40 40-60
Содержание в проскоке, % 12,7 4,49 21,6 9,2 11,3
Содержание 1-h¢¢I 0.25 0.18 0.125 0.08 0.03

1-h¢¢I-неполнота улавливания золы в каплеуловителе.

Общая неполнота сгорания улавливаемой золы в каплеуловителе

1-h¢¢I=SФ¢¢i*(1-h¢¢I)=0.127*0.25+0.18*4.49+0.216*0.125+0.092* 0.08+11.3* 0.03=0.12

В) Общая эффективность золоуловителя:

h=1–(1-h¢)*(1-h¢¢)=1–0,025*0,12=0,973

Таким образом, общая степень очистки дымовых газов в мокром золоуловителе с трубой Вентури составляет 97,3 %, что удовлетворяет требованиям.

Общий расход воды на орошение 4-ох труб Вентури 1-ого котлоагрегата.

Примем по формуле:

GВ = q * VГО =

Принимаем к установке в каждой трубе Вентури по одной форсунке

Производительностью:

QФ =

Тип таких форсунок УО ОРГРЭС с диаметром выходного отверстия d=26 мм при давлении воды на орошение трубы Вентури 25 кгс/см2 с углом распыла 75-80 0 наклона. Орошение каплеуловителя осуществляется через 30 сопел равномерно расположенных по окружности. Устанавливаем на котел 4 золоуловителя МС-ВТИ-4000 производительностью 200*103 м3/ч с вертикальными трубами Вентури L=5465 мм.

7.8 Производственная санитария

7.8.1 Защита от шума и вибрации

На станции шум и вибрацию создают турбогенераторы, мельницы, дробилки, насосы и т.п.

Нормирование шума осуществляется по ГОСТу 12.1.003-83 “ССБТ. Шум, общие требования безопасности”, который устанавливает допустимые значения уровня звукового давления и уровня звука (в дБА) для постоянного шума.

Уровень звукового давления нормируется в зависимости от характера шума (наружный или возникающий внутри помещения), от напряженности работы и частотной характеристики шума.

Звукоизоляция и защита от шума достигается следующим образом:

ИЦУ, тепловые щиты управления находятся в звукоизолирующих помещениях (защита персонала от шума);

для защиты от шума, в соответствии со СНиП II-12-77 “Защита от шума”, применены защитные экраны;

персонал, который находится непосредственно у оборудования, применяет средства индивидуальной защиты;

противошумные наушники.

Для уменьшения шума, создаваемого работающим оборудованием, на станции проведены следующие мероприятия:

турбины и другие вращающиеся механизмы, паропроводы имеют тепловую изоляцию, которая поглощает также и шум;

вентиляционные и насосные агрегаты установлены на вибрирующих основаниях;

в системах кондиционирования воздуха предусмотрены устройства шумоглушителей, а само оборудование установлено на амортизирующих прокладках.

Уровни звука на ТЭЦ:

Наименование помещения Уровни звука в дБА
1. Турбинный 90-101
2. Котельный 82-92
3. Компрессорный 89-102
4. Мазуто-насосная 90-94
5. Газораспределительный пункт 90-105

Вибрация нормируется по ГОСТу 12.1.012-78 “Вибрация. Общие требования безопасности”.

Данный ГОСТ устанавливает допустимые уровни колебательной скорости и ее логарифмические уровни.

Мероприятия по защите от вибрации работающего персонала:

под все оборудование, являющимся источником вибрации, установлены самостоятельные фундаменты островного типа;

установлены виброизоляторы между источником вибрации и фундаментом;

применяются средства индивидуальной защиты, хлопчатобумажные рукавицы, обувь на виброгасящей подошве.

7.8.2 Защита от избыточного тепла

Основными источниками избыточного тепла на станции являются: нагретые поверхности парогенераторов, турбин, паропроводов, а также электродвигатели и теплопоступления от солнечной радиации через оконные проемы.

Согласно ГОСТ 12.4.123-83 “ССБТ. Средства защиты от инфракрасного излучения”, допустимое облучение составит 350 Вт/м2.

Для защиты обслуживающего персонала от избыточного тепла на ТЭЦ предусмотрены следующие мероприятия:

излучающие поверхности покрыты тепловой изоляцией;

избыточное тепло удаляется с помощью вентиляции;

используются отражающие экраны.

7.8.3 Освещение

Согласно СНиП II-4-79 “Естественное и искусственное освещение” устанавливается яркость освещенной поверхности в пределах 500-2500 кд/м2.

На ТЭЦ предусмотрено естественное и искусственное освещение, напряжение осветительной сети в зданиях и сооружениях составляет 380-220 В.

В помещениях, где постоянно находится работающий персонал, применяются газоразрядные лампы. Общее освещение главного корпуса выполнено ртутными лампами (ДРП) в сочетании с лампами накаливания.

Для продолжения работы в случае, когда внезапное отключение рабочего освещения может вызвать взрыв, пожар, нарушение работы ТЭЦ, для эвакуации в помещениях с постоянным пребыванием персонала на ТЭЦ используют аварийное освещение.

Освещение складов, железнодорожных путей осуществляется прожекторами. Дороги и проезды на территории ТЭЦ освещены газоразрядными лампами.

7.8.4 Противопожарные мероприятия

Для наиболее пожароопасных объектов, таких как главный корпус, газомазутное хозяйство предусмотрены кольцевые дороги.