Смекни!
smekni.com

Опис та типологія коливань (стр. 3 из 4)

Зі сказаного очевидно, що функція Лагранжа, виражена через нормальні координати, розпадається на суму виражень, кожне з яких відповідає одномірному коливанню з однієї із частот ωа, тобто має вигляд


(3,12)

де та — позитивні постійні. З математичної точки зору це означає, що перетворенням (3,9) обидві квадратичні форми - кінетична енергія (3,3) і потенційна (3,2) - одночасно приводяться до діагонального виду.

Звичайно нормальні координати вибирають таким чином, щоб коефіцієнти при квадратах швидкостей у функції Лагранжа були рівні 1/2. Для цього досить визначити нормальні координати (позначимо їх тепер Qa ) рівностями

(3.13)

Тоді

Все викладене мало міняється у випадку, коли серед корінь характеристичного рівняння є кратні коріння. Загальний вид (3,9), (3,10) інтеграли рівнянь рухів залишається таким же (з тим же числом s членів) з тією лише різницею, що відповідним кратним частотам коефіцієнти ∆kа вже не є мінорами визначника, які, як відомо, звертаються в цьому випадку в нуль.

Кожної кратної частоті відповідає стільки різних нормальних координат, яка ступінь кратності, але вибір цих нормальних координат не однозначний. Оскільки в кінетичну й потенційну енергії нормальні координати (з однаковим ωа) входять у вигляді однаково, що перетворяться сум,

можна піддати будь-якому лінійному перетворенню, що залишає інваріантної суму квадратів.

Досить просте знаходження нормальних координат для тривимірних коливань однієї матеріальної крапки, що перебуває в постійному зовнішнім полі. Поміщаючи початок декартової системи координат у крапку мінімуму потенційної енергії U(x,y,z), ми одержимо останню у вигляді квадратичної форми змінних х, в, z, а кінетична енергія

(т — маса часток) не залежить від вибору напрямку координатних осей.

Тому відповідним поворотом осей треба тільки привести до діагонального виду потенційну енергію. Тоді

(3,14)

і коливання уздовж осей х, в, z є головними із частотами

В окремому випадку центральносиметричного поля (k1=k2=k3=k, U=kr²/2) ці три частоти збігаються.

Використання нормальних координат дає можливість привести завдання про змушені коливання системи з декількома ступенями волі до завдань про одномірні змушені коливання. Функція Лагранжа системи з обліком діючих на неї змінних зовнішніх сил має вигляд

(3,15)

де L0 — лагранжева функція вільних коливань. Уводячи замість координат хk нормальні координати, одержимо:

(3.16)

де уведене позначення

Відповідно рівняння руху

будуть містити лише по одній невідомій функції Qa(t).

Загасаючі коливання

Дотепер ми завжди мали на увазі, що рух тіл відбувається в порожнечі або що впливом середовища на рух можна зневажити. У дійсності при русі тіла в середовищі остання чинить опір, що прагне сповільнити рух. Енергія тіла, що рухається, при цьому зрештою переходить у тепло.

Процес руху в цих умовах уже не є чисто механічним процесом, а його розгляд вимагає обліку руху самого середовища й внутрішнього теплового стану як середовища, так і тіла. Зокрема, уже не можна затверджувати в загальному випадку, що прискорення тіла, що рухається, є функцією лише від його координат і швидкості в цей момент часу, тобто не існує рівнянь руху в тому розумінні, який вони мають у механіку. Таким чином, завдання про рух тіла в середовищі вже не є завданням механіки.

Існує, однак, певна категорія явищ, коли рух у середовищі може бути приблизно описане за допомогою механічних рівнянь руху шляхом введення в них деяких додаткових членів. Сюди ставляться коливання із частотами, малими в порівнянні із частотами, характерними для внутрішніх дисипативних процесів у середовищі. При виконанні цієї умови можна вважати, що на тіло діє сила тертя, що залежить (для заданого однорідного середовища) тільки від його швидкості.

Якщо до того ж ця швидкість досить мала, то можна розкласти силу тертя по її ступенях. Нульовий член розкладання дорівнює нулю, оскільки на нерухливе тіло не діє ніякої сили тертя, і перший незникаючий член пропорційний швидкості. Таким чином, узагальнену силу тертя fтр, що діє на систему, що робить одномірні малі коливання з узагальненою координатою х, можна написати у вигляді

де а — позитивний коефіцієнт, а знак мінус показує, що сила діє убік, протилежну швидкості. Додаючи цю силу в праву сторону рівняння руху, одержимо :

(4.1)

Розділимо його на m і введемо позначення

(4.2)

ω0 є частота вільних коливань системи під час відсутності тертя. Величина λ називається коефіцієнтом загасання. Таким чином, маємо рівняння

(4.3)

Дотримуючись загальних правил рішення лінійних рівнянь із постійними коефіцієнтами, думаємо х — ert і знаходимо характеристичне рівняння

Загальне рішення рівняння (4.3) є

Тут варто розрізняти два випадки.

Якщо λ < ω0, то ми маємо два комплексно сполучених значення r. Загальне рішення рівняння рухи може бути представлене в цьому випадку, як

де А — довільна комплексна постійна. Інакше можна написати:

(4.4)

де а й α — речовинні постійні. Рух, що виражається цими формулами, являє собою так звані загасаючі коливання. Його можна розглядати як гармонійні коливання з експоненціальне убутною амплітудою. Швидкість убування амплітуди визначається показником ?, а частота ? коливань менше частоти вільних коливань під час відсутності тертя; при ?<<?0 різниця між ? і ?0- другого порядку малості. Зменшення частоти при терті випливало очікувати заздалегідь, оскільки тертя взагалі затримує рух.

Якщо λ<<ω0 , то за час одного періоду 2π/ω амплітуда загасаючого коливання майже не міняється. У цьому випадку має сенс розглядати середні (за період) значення квадратів координати й швидкості, зневажаючи при усередненні зміною множника е-е-λt. Ці середні квадрати, мабуть, пропорційні е-2λt. Тому й енергія системи в середньому убуває за законом

(4.5)

де Е0 — початкове значення енергії.

Нехай тепер λ > ω0. Тоді обоє значення r речовинні, причому обоє негативні. Загальний вид рішення

(4.6)

Ми бачимо, що в цьому випадку, що виникає при досить великому терті, рух складається в убуванні |x|, тобто в асимптотичному (при t → ∞) наближенні до положення рівноваги. Цей тип руху називають аперіодичним загасанням.

Нарешті, в особливому випадку, коли λ = ω0 , характеристичне рівняння має всього один (подвійний) корінь r = ― λ . Як відомо, загальне рішення диференціального рівняння має в цьому випадку вид


(4.7)

Це - особливий випадок аперіодичного загасання, Воно теж не має коливального характеру.

Для системи з багатьма ступенями волі узагальнені сили тертя, що відповідають координатам xi, є лінійними функціями швидкостей виду

(4.8)

Із чисто механічних міркувань не можна зробити ніяких висновків про властивості симетрії коефіцієнтів аik по індексах i і k. Методами ж статистичної фізики можна показати, що завжди

aik = aki. (4.9)

Тому вираження (4.8) можуть бути написані у вигляді похідних

(4.10)

від квадратичної форми

(4.11)

називаної дисипативною функцією.

Сили (4.10) повинні бути додані до правої сторони рівнянь Лагранжа


(4.12)

Дисипативна функція має сама по собі важливий фізичний зміст - нею визначається інтенсивність дисипації енергії в системі. У цьому легко переконатися, обчисливши похідну за часом від механічної енергії системи. Маємо: