F=σ×l=2πrσ. (6)
Перед самым отрывом эта сила F уравновешивает силу тяжести mg. Силу тяжести чаще всего рассчитывают, определяя объем капли. Сталагмометрическую трубку определенного объема V заполняют исследуемой жидкостью и определяют число капель n, вытекающих из данного объема. Силу тяжести рассчитывают по уравнению:
(7)где р- плотность исследуемой жидкости.
В связи со сложностью измерения внутреннего диаметра капилляра (точнее - шейки капли) обычно поверхностное натяжение находят путем сравнения данных по истечению из сталагмометрической трубки исследуемой жидкости и жидкости с известным поверхностным натяжением (стандартной жидкости).
(8) - для искомой и стандартных жидкостейМасса капли может быть легко определена, но определение радиуса перетяжки r связано с некоторыми затруднениями. Подставлять же в уравнение вместо радиуса перетяжки величину радиуса конца недопустимо, т.к. ее радиус всегда больше радиуса перетяжки. Метод, позволяющий избежать измерения радиуса перетяжки, заключается в сравнении коэффициента поверхностного натяжения σ1, исследуемой жидкости с коэффициентом поверхностного натяжения σ0 другой жидкости, для которой величина этого коэффициента хорошо известна. Обычно в качестве эталонной жидкости применяется вода, величина коэффициента которой для различных температур дается в таблицах. Тогда можно написать уравнения для исследуемой жидкости:
2πrσ1 = m1g . (9)
Для эталонной жидкости:
2πrσ0 = m0g . (10)
Здесь m1 и m0 – массы капель исследуемой и эталонной жидкостей и, а радиусы перетяжек капель обеих жидкостей приняты одинаковыми. Деля почленно выражение (9) на выражение (10), получим :
σ1 / σ 0 = m1 / m0 (11)
Массы капель исследуемой и эталонной жидкостей можно выразить через их плотности ρ1 и ρ0 , число капель n1 и n0, содержащихся в одном и том же объеме V.
Для исследуемой жидкости:
m1 = ρ1 V / n1 (12)
Для эталонной жидкости:
m0 = ρ0 V / n0. (13)
Подставив выражение для m1 и m0 в уравнение (5), получим:
σ1 = σ0 (n0 ρ1 / n1 ρ0) (14)
Для определения коэффициента поверхностного натяжения жидкости по этому способу применяется сталагмометр. Он представляет собой стеклянную капиллярную трубку с делениями, заканчивающуюся очень узким отверстием в плоском нижнем конце трубки. Каждый такой прибор характеризуется т.н. постоянной сталагмометра, которая зависит от объема резервуара и радиуса капилляра и вычисляется по формуле:
Vg/2πr (15)
Заключение
Методы определения поверхностного натяжения жидкостей, как правило, сводятся к измерению силы, противодействующей силе поверхностного натяжения.
Определяют поверхностное натяжение серии растворов известной концентрации. В качестве сравнительной жидкости используют толуол, поверхностное натяжение которого при температуре находят по справочнику. Путем последовательных разбавлений вдвое готовят шесть растворов исследуемого спирта разных концентраций (в зависимости от концентрации исходного раствора). Измеряют поверхностное натяжение растворов и строят изотерму поверхностного натяжения в координатах.
Список используемых источников
1. Адамсон А. Физическая химия поверхностей. Пер. с англ./ Под ред. З.М. Зорина. М.: Мир, 1979. 588 с.
2. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. Пер с англ. М.: Мир, 1984. 306 с.
3. Зонтаг Г., Штренге К. Коагуляция и устойчивость дисперсных систем. Пер с нем. /Под ред. О.Г.Усьярова. Л-д: Химия, 1973. 152 с.
4. Расчеты и задачи по коллоидной химии. Под ред. Барановой В.И. М.: Высш. шк., 1989. 289 с.
5. Практикум по коллоидной химии и электронной микроскопии/ Под ред. Воюцкого С.С. М.: Химия, 1974.
6. Шутова А.И. Задачник по коллоидной химии. - М.: Высш. шк., 1966.