Смекни!
smekni.com

Определение реакций опор составной конструкции (стр. 1 из 4)

Задание С-3. Определение реакций опор составной конструкции

Вариант № 1.

Найти реакции опор и давление в промежуточном шарнире составной конструкции. Схема конструкции представлена на рис. 1 (размеры – в м), нагрузка указана в таблице 1.

Рис. 1

Таблица 1.

P1, кН М, кН×м q, кН/м
6,0 25,0 0,8

С-3. Определение реакций опор составной конструкции

Решение. Рассмотрим систему уравновешивающихся сил,

приложенных ко всей конструкции (рис. 2).

y

P1y P1

90°

P1x C

Q M

RAy RBy

RAx RBx x

A B

Рис. 2.

Разложим силу P на составляющие Px и Py.


P1yP1

a

P1x aa

6

Рис. 3.

P1x = P1×sin(a),

P1y = P1×cos(a).

a = arctg(1,5/6) = arctg(0,25) = 14°.

P1x = P1×sin(a) = P1×sin(14°) = 6×0,24 = 1,44 (кН),

P1y = P1×cos(a) = P1×cos(14°) = 6×0,97 = 5,82 (кН).

Q = q×3,5 = 0,8×3,5 = 2,8 (кН).

С-3. Определение реакций опор составной конструкции.

Запишем уравнения равновесия:

(1)

(2)

(3)

Данная система из 3 уравнений содержит 4 неизвестных, для их нахождения рассмотрим отдельно правую и левую части конструкции.

Рассмотрим систему уравновешивающихся сил, приложенных к левой части конструкции (рис.4):


y

P1y P1

90°

P1x C

RCx

Q RCy

RAy

RAxx

A

Рис. 4.

Запишем уравнения равновесия:

(4)

(5)

С-3. Определение реакций опор составной конструкции

(6)

Рассмотрим систему уравновешивающихся сил, приложенных к правой части конструкции (рис.5):


y

R`Cy

R`Cx

C

M

RBy

RBxx

B

Рис.5.

Запишем уравнения равновесия:

(7)

(8)

(9)

где RCx = R`Cx, RCy = R`Cy.

Таким образом, имеем систему 4 уравнений (1), (2), (6) и (9) с 4 неизвестными.

Из уравнения (9)

Из уравнения (1)

С-3. Определение реакций опор составной конструкции

Из уравнения (6)

Из уравнения (2)

Найдем реакции шарнира С:

RCx = -RBx = 12,5 кН,

RCy = -RBy = 0,07 кН.

Отрицательные значения RBx и RBy говорят о том, что действительное направление RBx и RBy противоположно указанному на рис.4.

Итак,

С-3. Определение реакций опор составной конструкции



Найти реакции опор конструкции изображенной на рис.1.


Дано: Q = 2, G = 20, a = 20, b = 30, c = 10 R =15, r =5.Решение: Разложим реакции в опорах А и Б на их составляющие по осям коардинат, при этом RAy=RBy=RDy=0


Составим уравнения сумм моментов относительно всех осей:

Р*15-q*5=0, где , отсюда Р=(q*5)/15

-qx*20+P*60-RBx*80, отсюда RBx=(qx*20-P*60)/80

-qx*20-G*(20+30)+RBz*(20+30+30) отсюда RBz= (qx*20+G*50)/80

-Raz*80+qz*60+G*30=0 отсюда Raz= (qz*60+G*30)/80

Rax*80+ qx*60-P*30=0 отсюда Rax=-( qx*60-P*30)/80

qx=Q*cos45; qz=Q*sin45

Ra= RB=

Результаты работы

Raz Rax Ra RBz RBx RB

Применение теоремы об изменении кинетической энергии к изучению движения механической системы.

Вариант № 1.

Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано на рис. 1. Учитывая трение скольжения тела 1, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.

В задании приняты следующие обозначения: m1, m2, m3, m4 – массы тел 1, 2, 3, 4; b - угол наклона плоскости к горизонту; f – коэффициент трения скольжения.

Необходимые для решения данные приведены в таблице 1. Блоки и катки считать сплошными однородными цилиндрами. Наклонные участки нитей параллельны соответствующим наклонным плоскостям.


Рис. 1


Таблица 1.

m1, кг m2, кг m3, кг m4, кг b, град f s, м
m 4m 0,2m 4m/3 60 0,10 2

Решение.

Применим теорему об изменении кинетической энергии системы:

(1)

где T0 и T – кинетическая энергия системы в начальном и конечном положениях;

- сумма работ внешних сил, приложенных к системе;
- сумма работ внутренних сил системы.

Для рассматриваемых систем, состоящих из абсолютно твердых тел, соединенных нерастяжимыми нитями,

Так как в начальном положении система находится в покое, то Т0=0.

Следовательно, уравнение (1) принимает вид:

(2)

Кинетическая энергия рассматриваемой системы Т в конечном ее положении (рис.2) равна сумме кинетических энергий тел 1, 2, 3 и 4:

Т = Т1 + Т2 + Т3 + Т4. (3)


2

1

w2

VA

V3

3 b V1

A C3 CV

w3

V4

4

Рис. 2.

Д-10

Кинетическая энергия груза 1, движущегося поступательно,

(4)

Кинетическая энергия барабана 2, совершающего вращательное движение,

, (5)

где J2x – момент инерции барабана 2 относительно центральной продольной оси:

, (6)

w2 – угловая скорость барабана 2:

. (7)

После подстановки (6) и (7) в (5) выражение кинетической энергии барабана 2 принимает вид:

. (8)

Кинетическая энергия барабана 3, совершающего плоское движение:

, (9)

где VC3 – скорость центра тяжести С3 барабана 3, J3x – момент инерции барабана 3 относительно центральной продольной оси:

, (10)

w3 – угловая скорость барабана 3.

Так как двигается по нити без скольжения, то мгновенный центр скоростей находится в точке СV. Поэтому

, (11)

. (12)

Подставляя (10), (11) и (12) в (9), получим:

. (13)