Смекни!
smekni.com

Нелинейная оптика (стр. 3 из 6)

Нелинейные восприимчивости

и так далее – новые параметры вещества. Изучение их дисперсии (зависимости от
) – предмет нелинейной спектроскопии. Для атомов методами квантовой механики удаётся рассчитать нелинейные восприимчивости любого порядка. Их дисперсия имеет очень сложный вид, так как резонансы возникают не только при совпадении частот действующих полей с собственными частотами атома, но и при совпадении с ними тех или иных комбинаций этих частот. В не слишком сильных лазерных полях совпадение результатов теории и эксперимента оказывается хорошим.

Была развита феноменологическая теория, позволившая получить количественные результаты, во многих случаях хорошо согласующиеся с экспериментом, и дать рецепты поиска новых нелинейно-оптических материалов. В то время как значения

для подавляющего большинства оптических материалов отличаются между собой не более чем на один порядок, значения
отличаются на три порядка. Это свидетельствует об особой физической информативности нелинейных свойств вещества.

III. Оптические переходы

3.1 Фотоны друг с другом непосредственно не взаимодействуют

В физике используется (и подтверждается) представления о «непосредственном взаимодействии», приводящем к рассеянию частиц друг на друге, к поглощению одних частиц другими, взаимным превращениям частиц и, в частности, к их распадам. Фотоны не рассеиваются друг на друге, не поглощаются друг другом, не распадаются. Между ними не действуют ни электромагнитные силы, ни какие-либо другие. Итак, фотоны непосредственно друг с другом не взаимодействуют! Поэтому всякий раз, когда наблюдается превращение одних фотонов в другие, следует говорить о взаимодействии через некоего «посредника».

Роль «посредника» играет вещество, а точнее, его частица, и прежде всего электрон. Будем в дальнейшем рассматривать этот «посредник» как некий микрообъект, который характеризуется определенной системой энергетических уровней.

Непосредственное взаимодействие имеет место между фотоном и микрообъектами. Оно проявляется в том, что микрообъект может поглощать фотоны или испускать их (или же одновременно и поглощать, и испускать). При этом микрообъект совершает квантовые переходы между определенными энергетическими уровнями. Поскольку непосредственными участниками этих переходов являются фотоны, то такие переходы называют оптическими.

Таким образом, все процессы «преобразования» одних фотонов в другие (все процессы преобразования света в свет) сводится к определенным оптическим переходам микрообъектов. Именно по этой причине следует более подробно обсудить оптические переходы

3.2 Однофотонные и многофотонные переходы

Оптические переходы разделяются на однофотонные и многофотонные. В однофотонном переходе участвует, т. е. испускается либо поглощается один фотон. В многофотонном переходе участвуют одновременно несколько фотонов — два или более. В зависимости от количества участвующих в переходе фотонов различают многофотонные переходы разной кратности: двухфотонные (кратность равна 2), трехфотонные (кратность равна 3) и т. д. Предположим, что в общем случае рассматривается многофотонный переход кратности N. Это означает, что в нем участвуют N фотонов. При этом может оказаться, что т фотонов испускаются, а /V— т фотонов поглощаются. Варьируя число т от нуля до N можно, очевидно, перебрать все типы многофотонных переходов кратности N.

Подчеркнем, что многофотонный переход принципиально нельзя разбивать на какие-либо временные этапы; его следует рассматривать как единый, неделимый во времени процесс.

Возьмем для примера двухфотонный переход, в котором поглощаются два фотона. Здесь нельзя полагать, будто сначала поглощается один фотон, а потом другой фотон. Существенно, что оба фотонапоглощаются одновременно. Если бы можно было полагать, что сначала поглощается один фотон, а потом другой, то в этом случае мы имели бы дело уже не с двухфотонным переходом, а с двумя однофотонными переходами.

Таким образом, двухфотонный (как и всякий многофотонный) переход качественно отличается от совокупности (последовательности) однофотонных переходов.

3.3. Виртуальный уровень.

На рисунке изображены два однофотонных перехода: сначала поглощается один фотон с энергией

и микрообъект переходит с уровня 1 на уровень 2, затем поглощается другой фотон и микрообъект переходит с уровня 2 на уровень 3. А как изобразить двухфотонный переход, в котором поглощаются два фотона с энергиями
? Такой переход принято изображать так, как показано на рисунке , на котором пунктиром показан так называемый виртуальный уровень.|

Что такое «виртуальный уровень»? Объясняя это понятие, напомним, что двухфотонный переход нельзя разбить во времени на два этапа. Отсюда следует, что принципиально нельзя обнаружить микрообъект на виртуальном уровне (в противном случае можно было бы говорить о двух этапах — до обнаружения и после обнаружения микрообъекта). Именно этим и отличается виртуальный уровень от обычного энергетического уровня.

Можно ли заключить отсюда, что виртуальный уровень оказывается «несуществующим», «нереальным»? Ведь на любом реально существующем энергетическом уровне микрообъект может быть в принципе обнаружен!

Мы не станем обсуждать здесь степень реальности (или нереальности) виртуальных уровней. Для нас главное состоит в том, что реально существуют как однофотонные, так и многофотонные переходы. И если для представления однофотонных переходов достаточно системы обычных (реальных) энергетических уровней, то для представления многофотонных переходов такой системы уровней уже недостаточно приходится обращаться к специфическому понятию - понятию виртуальных уровней. Приведенный на рисунке 1 пример достаточно ясно, показывает специфику это понятия.

3.4. Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?

Рассмотрим различныепроцессы «превращения» одних фотонов в другие фотоны. Начнем с процесса, представленного на рисунке 2. Микрообъект поглощает фотон с энергией
и переходит с уровня 1 на уровень 3. Затем он испускает фотон энергией
и переходит с уровня 3 на уровень 2. Таким

образом, исходный (первичный) фотон с энергией
«превращается» в конечный (вторичный) фотон с энергией
. Роль «посредника» в этом «превращении» играет микрообъект. Впрочем, здесь микрообъект оказался не просто «посредником» — ведь его состояние тоже изменилось: он перешел в итоге с уровня 1 на уровень 2.

Более выпукло роль микрообъекта как «посредника» между фотонами (именно «посредника» и не более) проявляется в процессе, представленном на рисунке . Микрообъект поглощает фотон с энергией

и переходит с уровня 1 на уровень 2. Затем он испускает фотон с такой же энергией и возвращается на уровень 1. Итак, состояние микрообъекта в конечном счете не меняется; в то же время первичный фотон «превращается» во вторичный. Этот последний имеет такую же энергию, но, разумеется, может отличаться как направлением импульса, так и поляризацией.

Далее обратимся к процессу, показанному на рисунке (пунктиром изображен виртуальный уровень). В отличие от двух предыдущих процессов мы имеем здесь не два однофотонных перехода, а один двухфотонный переход. Если в процессе, показанном на рисунке , микрообъект в принципе можно обнаружить на уровне 2 (в промежутке между поглощением первичного и испусканием вторичного фотона), то теперь ситуация совершенно иная: принципиально нельзя обнаружить микрообъект на виртуальном уровне; не существует никакого «промежутка» времени между поглощением первичного и испусканием вторичного фотона. Более того, нельзя даже утверждать, что сначала поглощается первичный фотон, а затем испускается вторичный. Процесс поглощения и испускания является в данном случае единым, неделимым во времени процессом; при этом в принципе невозможно обнаружить какого-либо, даже временного изменения состояния микрообъекта.