План
Введение. Историческая справка.
I. Интенсивность света в оптике.
1.1 Частота и поляризация – основные характеристики света в долазерной оптике.
1.2 Роль интенсивности в оптике.
II. Взаимодействие сильного светового поля со средой.
2.1 Линейный атомный осциллятор.
2.2 Нелинейный атомный осциллятор. Нелинейные восприимчивости.
2.3 Причины нелинейных оптических эффектов.
III. Оптические переходы.
3.1 Фотоны друг с другом непосредственно не взаимодействуют.
3.2 Однофотонные и многофотонные переходы.
3.3 Виртуальный уровень.
3.4 Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?
3.5 Процесс, описывающий генерацию второй гармоники (удвоение частоты).
IV. Преобразование одной световой волны в другую.
4.1 Некогерентные и когерентные процессы преобразования света в свет.
4.2 Условие волнового синхронизма на примере генерации второй гармоники.
4.3 Классическое объяснение генерации второй гармоники.
V. Заключение.
Введение. Историческая справка
Среди огромного количества новых научных и технических возможностей, открывшихся после создания лазеров, особое место занимают новые направления исследований, возникшие в самой оптике. Одним из важных и наиболее интересных направлений является исследование зависимости характера оптических эффектов в различных средах от интенсивности света. Эти исследования стали возможны после создания лазеров и привели к возникновению новой области физики – нелинейная оптика.
Начало современного этапа в развитии нелинейной оптики (1961) связано с созданием лазеров, которое открыло возможности изучения и использования нелинейных явлений фактически во всех областях физики и прикладной оптики. С появлением лазеров оптика получила источники когерентного излучения большой мощности. С помощью импульсных лазеров можно получить интенсивности света
. Мощные лазерные системы позволяют получить . Напряжённости светового поля ( пропорционально ) в таких пучках сравнимы или даже превышают внутриатомные поля. В таких световых полях возникают новые оптические эффекты и существенно изменяется характер уже известных явлений.Вместе с тем ясные представления о том, что законы линейной оптики носят приближённый характер и применимы лишь для не слишком сильных световых полей, существовали и до появления лазеров. Около 50 лет назад С. И. Вавиловым были поставлены эксперименты с целью обнаружения нелинейных явлений. В 1923 г. Вавилов и В. Л. Лёвшин обнаружили уменьшение поглощения света урановым стеклом с ростом интенсивности света и объяснили это тем, что в сильном электромагнитном поле большая часть атомов (или молекул) находится в возбуждённом состоянии и уже не может поглощать свет. Считая, что это лишь один из множества возможных оптических нелинейных эффектов, Вавилов впервые ввёл термин «Нелинейная оптика». В 50-х гг. Г. С Горелик теоретически рассмотрел возможность наблюдения ряда нелинейных оптических эффектов с помощью фотоэлектрических умножителей. Один из них – смещение оптического дублета с выделением разностной частоты, лежащей в диапазоне СВЧ (гетеродинирование света), - наблюдали в 1955 г. А. Форрестер, Р. Гудмундсен и П. Джонсон (США). К нелинейной оптике в широком смысле относятся и хорошо известные электрооптические эффекты (линейный эффект Поккельса и квадратичный эффект Керра). Оказалось, что влияние низкочастотного электрического поля на показатель преломления среды имеет ту же физическую природу, что и такие нелинейно-оптические явления, как генерация оптических гармоник и смещение частот.
В 1961 г. П. Франкен с сотрудниками (США) открыл эффект удвоения частоты света в кристаллах – генерацию 2-й гармоники. В 1962 г. Наблюдалось утроение частоты (генерация 3-й гармоники).
В 1961-1963 гг. в СССР (Р. В. Хохлов, С. А. Ахманов) и в США (Н. Бломберген) были получены фундаментальные результаты в теории нелинейных оптических явлений, заложившие теоретические основы нелинейной оптики.
В 1962-1963 гг. открыто и объяснено вынужденное и комбинационное рассеяние света, что послужило толчком к изучению вынужденного рассеяния других видов.
В 1965 г. обнаружена самофокусировка света. При этом мощный световой пучок, распространяясь в среде, во многих случаях не испытывает обычной, так называемой дифракционной, расходимости, а, напротив, самопроизвольно сжимается.
В 1965 г. были созданы параметрические генераторы света, в которых нелинейные оптические эффекты используются для генерирования когерентного оптического излучения, плавно перестраиваемого по частоте в широком диапазоне длин волн.
В 1967 г. началось исследование нелинейных явлений, связанных с распространением в среде сверхкоротких (длительностью до
) световых импульсов.С 1969 г. развиваются методы нелинейной и активной спектроскопий.
I. Интенсивность света в оптике
1.1 Частота и поляризация – основные характеристики света в долазерной оптике
Световая волна, являющаяся волной электромагнитной, характеризуется частотой, амплитудой и поляризацией. Гармоническая (или монохроматическая) волна, распространяющаяся вдоль оси
, описывается выражением: .Здесь E– электрический вектор волны; e– единичный вектор, характеризующий направление поляризации (ориентацию электрического вектора); A– амплитуда (в
), - частота (в ); - волновое число; с – скорость света в вакууме ( ) и n– показатель преломления среды, в которой распространяется свет.С амплитудой A связан поток мощности или интенсивность волны
; полная мощность ; a– радиус пучка.В «долазерную» эпоху физики, изучавшие поглощение света веществом, отражение света от границы раздела разных сред, рассеяние света и такое прочее, знали, что главными факторами, определяющими характер этих процессов, являются частота и поляризация световой полны. Какова прозрачность данной среды, не является в достаточной мере корректным, пока не уточнено, о какой области оптического спектра идет речь: о видимом, ультрафиолетовом или инфракрасном излучении. Более того, сложный характер спектра поглощения среды требует указать точное значение частоты. Изучение зависимости поглощения света от частоты
(или длины волны ) лежит в основе оптической абсорбционной спектроскопии — области, ставшей самостоятельной наукой и имеющей огромное число приложений. Шкала частот, или длин волн, до недавнего времени являлась основной шкалой, с помощью которой классифицировали эффекты взаимодействия света с веществом; в основе такой классификации лежит неявное предположение о том, что в процессе взаимодействия света со средой частота света существенно не изменяется.Вопрос о величине коэффициента отражения света на границе двух сред также не является корректным, если не указано направление поляризации падающей волны. Например, при угле падения, равном углу Брюстера, свет, поляризованный в плоскости падения, вообще не отражается, несмотря на скачок показателя преломления.
1.2 Роль интенсивности света
В подавляющем числе оптических эффектов, исследованных до создания лазеров, амплитуда световой волны А все же не влияла на характер явления. В большинстве случаев количественные, а тем более качественные результаты экспериментов, которые проводятся с нелазерными источниками света, не зависят от интенсивности света. Такие оптические характеристики среды, как показатель преломления, коэффициент поглощения, коэффициент рассеяния, фигурировали в физических справочниках без указания на то, при каких интенсивностях света они были измерены. Опыт показывает, что в той области интенсивностей, которой располагала долазерная оптика, зависимость указанных величин от интенсивности никак не проявляется.
Разумеется, для экспериментатора, выполнявшего тот или иной опыт, интенсивность источника света всегда была важна; она определяла, в частности, требования к чувствительности используемой им приемной аппаратуры. Т. о., в долазерной экспериментальной оптике интенсивность излучения характеризует уровень экспериментальной техники и почти не имеет отношения к физике изучаемых явлений. Возникает естественный вопрос: является ли сказанное следствием общего физического закона типа: «все оптические явления не зависят от интенсивности излучения», либо дело в ограниченности экспериментального материала, собранного долазерной оптикой. Многочисленные исследования по физической оптике, выполненные с мощными лазерами, показали, что если уж формулировать некий общий закон, касающийся зависимости оптических явлений от интенсивности света, то эта формулировка должна быть диаметрально противоположной.