(а) | (б) | |
Рис. 5 – (а) Дисперсійні характеристики та (б) поведінка забороненої зони залежно від радіусу розсіювачів решітки планарного ФК |
На рис. 5 (а) показано, як дисперсійні характеристики планарного ФК (позначені маркерами ○) зміщуються під управлінням ЕМВ. Поведінка забороненої зони залежно від радіусу розсіювачів решітки планарного ФК зображена на рис. 5 (б) для випадків лінійної (суцільна лінія) і нелінійної (пунктирна лінія і точки) взаємодії.
У Розділі 4 вивчене явище нелінійного тунелювання електромагнітних хвиль у хвилевідних системах на основі діелектричних періодичних структур.
Рис. 6 – Система управління ЕМВ |
На рис. 6 схематично наведена запропонована в дисертаційній роботі система управління ЕМВ, що є компактнішим і найшвидкіснішим аналогом вживаних у даний час оптоелектронних пристроїв. Це досягається за рахунок того, що в цій системі не використовуються електроди, до яких додається напруга, що управляє. У ній управління ЕМВ здійснюється за допомогою електромагнітної хвилі, що управляє. Система складається з двох паралельних хвилеводів, сформованих за допомогою видалення двох рядів розсіювачів у напрямі осі x. Розсіювачами є циліндри з нелінійного матеріалу AlGaAs, що характеризується нелінійним коефіцієнтом поглинання
м/Вт, а також лінійним коефіцієнтом заломлення nr = 3,4 та нелінійним коефіцієнтом заломлення n2=1,5∙10-17 м2/Вт. Радіус розсіювачів r = 0,2a, де а = 510 нм є періодом квадратної решітки ФК. Між двома рядами розсіювачів, що розділяють два паралельні хвилеводи, вбудовані додаткові розсіювачі з такими самими параметрами, але віддалені один від одного на подвоєну відстань 2а. Роль цих розсіювачів полягає в тому, що їх присутність забороняє перекачування енергії з одного хвилеводу за рахунок ефекту тунелювання електромагнітних хвиль.Ряд розсіювачів з подвоєною відстанню між центрами є незалежною хвилевідною системою. Мале значення групової швидкості електромагнітних хвиль у цій системі дозволяє розглядати її як сповільнювану систему (СС), що дає змогу ЕМВ ефективніше взаємодіяти з нелінійним матеріалом.
У моделі системи управління ЕМВ, наведеній на рис. 6, вважається, що для створення умов, при яких буде можливе перекачування енергії з одного хвилеводу в іншій за рахунок тунельного ефекту, достатньо збільшити коефіцієнт заломлення на 10% (інтенсивність близько 300 ГВт/см2). Вибір такого завищеного значення зумовлений необхідністю скоротити довжину моделі пристрою управління ЕМВ до 70 періодів і, як наслідок, витратити значно менше обчислювальних ресурсів для проведення моделювання.
На рис. 7 (а) наведено розподіл інтенсивності ЕМВ при лінійній взаємодії, коли сигнал, що управляє, вимкнений. На рис. 7 (б) і рис. 7(в) зображено розподіл інтенсивності у випадку нелінійної взаємодії, коли сигнал, що управляє, концентруючись у розсіювачах СС, збільшує коефіцієнт заломлення на 10%. Як видно на рис. 7, при лінійній взаємодії хвилеводи не зв'язані і хвиля, що входить у Port 1, повністю виходить через Port 4. У випадку нелінійної взаємодії хвилеводи стають зв'язаними і хвиля, яка входить у Port 1, повністю виходить через Port 3 за рахунок тунельного ефекту.
У випадку збільшення коефіцієнта заломлення на 10% час перекачування енергії з одного хвилеводу в іншій складає 1,5 нс. Проте на практиці необхідно виходити з реальних значень, таких як, наприклад, 0,01%. Для такого значення довжина системи управління має бути близько 1 мм в довжину, а час перекачування енергії з одного хвилеводу в іншій складатиме близько 45 нс.
Виявлені закономірності нелінійного тунелювання електромагнітних хвиль в хвилевідних системах, пов'язані з нелінійним ефектом двофотонного поглинання (2ФП). Для отримання таких фізичних обмежень у двовимірному і тривимірному наближеннях побудована математична модель ефекту 2ФП, яка базується на класичних рівняннях Максвела і дозволяє врахувати поглинальні властивості матеріалу, в якому розповсюджується ЕМВ.
За наявності тільки ефекту 2ФП, коефіцієнт поглинання має вид
, де і є відповідно лінійним і нелінійним коефіцієнтами поглинання. Для більшості матеріалів, використовуваних для виробництва ФК (наприклад, AlGaAs або Si), в діапазоні довжин хвиль, застосованому у системах зв'язку. Дійсна частина коефіцієнта заломлення пов'язана з коефіцієнтом поглинання як і приймає вид . Вираз для провідності може бути записаний таким чином: , де – швидкість світла у вільному просторі. Пам'ятаючи, що , де – вектор електричного поля, одержуємо таку формулу для провідності: . Одержане рівняння потім використовується в алгоритмі МСР.Вивчення спектра пропускання СС дозволяє оцінити вплив 2ПФ на функціональні характеристики системи управління ЕМВ, наведеної на рис. 6. На рис. 8 зображено лінійний спектр пропускання СС (суцільна лінія) і спектр пропускання для випадків нелінійної взаємодії у відсутності (лінія з маркерами ○) і присутності (пунктирна лінія) 2ПФ. Аналізуючи результати, подані на рис. 8, слід зазначити, що у випадку нелінійної взаємодії максимуми спектрів пропускання зміщені в область низьких частот щодо максимуму спектра пропускання у випадку лінійної взаємодії. Така поведінка спектра пропускання аналогічна зсуву дисперсійних кривих ФК, вивченому в Розділі 3. Проте за наявності 2ПФ даний зсув менше, ніж у випадку, коли вплив ефекту 2ПФ не враховується, оскільки менша кількість енергії електричного поля концентрується в розсіювачах.
Таким чином, можна зробити висновок, що ефект 2ПФ може знизити ефективність комутації вхідного сигналу з одного хвилеводу в іншій. Нелінійне поглинання змушує збільшувати довжину системи управління ЕМВ, а також підвищувати інтенсивність електромагнітної хвилі, що управляє. Отже, даний ефект слід враховувати у процесі проектування систем управління ЕМВ на основі діелектричних періодичних середовищ.
ОСНОВНІ РЕЗУЛЬТАТИ І ВИСНОВКИ
В ході виконання дисертаційної роботи було вирішене актуальне завдання вивчення закономірностей нелінійної взаємодії електромагнітної хвилі з діелектричними періодичними структурами, виявлення і аналізу фізичних явищ, які зумовлюють процес розповсюдження електромагнітних хвиль у таких структурах, а також їх застосування для управління електромагнітним випромінюванням. Були отримані такі основні результати:
1. Показана можливість управління електромагнітним випромінюванням в діелектричних періодичних структурах – фотонних кристалах. Використовуючи нелінійні властивості діелектричних матеріалів, дані структури дозволяють за допомогою однієї електромагнітної хвилі управляти розповсюдженням інших електромагнітних хвиль. Таке управління дає можливість створити елементну базу повністю оптичних приладів і пристроїв, які будуть використані для створення систем зв'язку нового покоління і оптичного комп'ютера.
2. Розроблений і реалізований метод розрахунку лінійних і нелінійних характеристик діелектричних періодичних структур на основі методу скінченних різниць у двовимірному і тривимірному наближеннях. Періодичність для нескінченних діелектричних структур враховується за допомогою теореми Блоха, а штучно поглинаючі граничні умови застосовуються у випадку, коли необхідно врахувати кінцеве число періодів діелектричної періодичної структури. Для перевірки методу скінченних різниць вивчена стійкість вживаної скінченно-різницевої схеми та оцінена обчислювальна погрішність. У випадку лінійної взаємодії було проведене порівняння результатів експерименту з результатами чисельного моделювання. При нелінійній взаємодії електромагнітного випромінювання з діелектричною періодичною структурою було зроблене порівняння з результатами, одержаними за допомогою чисельного моделювання методом плоских хвиль і методом Фур’є.
3. Вивчений ефект зсуву дисперсійних кривих і забороненої зони діелектричних періодичних структур у випадку нелінійної взаємодії електромагнітного випромінювання з діелектричним періодичним середовищем. Зокрема, одержані дисперсійні характеристики одновимірних, двовимірних і планарних фотонних кристалів, а також хвилевідно-резонаторних систем на їх основі. Показано, що зсув дисперсійних характеристик залежить від інтенсивності електромагнітного випромінювання і групової швидкості електромагнітних хвиль у періодичній структурі.