Ключевые слова: диэлектрическая периодическая структура, фотонный кристалл, метод конечных разностей, дисперсионная характеристика, замедляющая система, электромагнитное излучение, нелинейное взаимодействие.
ABSTRACT
Maksymov I.S. Nonlinear interaction of the electromagnetic radiation with dielectric periodic structures. – Manuscript.
Thesis for fulfilment of Ph.D. degree by speciality 01.04.03 – Radio physics. – Kharkov National University of Radio Electronics, Kharkov, 2008.
This thesis is devoted to the investigation of features originating from the nonlinear interaction of the electromagnetic radiation with dielectric periodic structures. Physical phenomena that set conditions for the propagation of the electromagnetic radiation within dielectric periodic structures were revealed and studied. It was shown how dielectric periodic structures could be implemented for controlling electromagnetic radiation with electromagnetic radiation.
In the course of the predoctoral work the following novel scientific results were obtained. It was shown that the nonlinear interaction of electromagnetic radiation with dielectric periodic structures gives rise to a shifting of dispersion curves and forbidden electromagnetic band gap with regard to the nonexcited state. For the first time, a systematic analysis of this shifting was made by means of the Finite-Difference Time-Domain method. A physical interpretation of the shifting was given and a possibility of implementation of systems for controlling electromagnetic radiation was shown. Specifically, a novel scheme of the system for controlling electromagnetic radiation was proposed. Intrinsic physical limits of this scheme placed on the electromagnetic radiation control were found. In particular, it was shown that the two-photon absorption effect would make the switch condition worse and require the objective power and the length of the control system to be increased.
The results obtained might be applied to solving scientific and scientific-and-engineering electrodynamics’ problems. Numerical study of dispersion characteristics and techniques of electromagnetic radiation control allowed us to make a step towards novel ultrahigh speed communication systems and optical computers.
Key words: Kerr nonlinearity, nonlinear interaction, periodic structure, photonic crystal, two-photon absorption, all-optical switching