Планируемая общая установленная мощность микро и малых ГЭС составляет 369, 38 МВт при суммарной выработке электроэнергии в объеме 2032, 6 млн кВт*ч. Малая гидроэнергетика занимает ведущее место по объемам освоения среди возобновляемых источников энергии.
Программой запланировано освоение суммарной установленной мощности ветроэнергетических установок в объеме 228 МВт с выработкой электроэнергии количеством 570 млн кВт*ч.
Реализация солнечных фотоэлектрических установок определена в объеме 2, 36 МВт с выработкой 3, 77 млн кВт*ч. Установленная мощность гелионагревательных систем определена в объеме 69, 89 Гкал/ч при выработке энергии на 111, 82 тыс. Гкал, что обеспечивает замещение органического топлива в количестве 15, 99 тыс. т у. т.
Выработка электрической энергии на основе биомассы определена в объеме установленной мощности в 152, 02 МВт, а производство тепловой энергии 2753, 74 тысяч Гкал, что обеспечивает суммарное замещение органического топлива в количестве 686, 37 тысяч т у. т.
Планируемая установленная мощность геотермальных станций по выработке электроэнергии составит 68, 3 МВт, а по выработке тепловой энергии 16, 5 тыс. Гкал, что в сумме обеспечит замещение органического топлива в объеме 133, 84 тыс. т у. т.
Сооружение энергетических установок на основе использования низкопотенциальной энергии (преимущественно тепловых насосов) предусматривает освоение 543, 9 Гкал/ч установленной мощности с выработкой 2991, 4 тыс. Гкал и замещением 221, 2 тыс. т у. т.
Предусмотренное строительство комбинированных систем на базе возобновляемой энергетики и локальных энергоресурсов обеспечит ввод электрической мощности в объеме 30, 54 МВт с выработкой электроэнергии количеством 122, 16 млн. кВт*ч и тепловой энергии мощностью 10, 2 Гкал/ч с выработкой 314, 6 тыс. Гкал. Общее замещение органического топлива от комбинированных энергосистем составит 87, 75 тыс. т у. т.
Малая гидроэнергетика.
На территории области протекает более 18 тысяч рек и речек. Имеется более 100 водоёмов с объёмом воды выше 1 млн. м³; большая часть из них имеет регулируемый водосброс.
Гидрологический потенциал характеризуется следующими особенностями:
• наличием рек большими дебитами и малыми перепадами высот по длине русла;
• наличием рек с малыми дебитами и значительными перепадами высот;
• наличием большого количества искусственных водоемов (прудов) с регулируемым водосбросом небольшой высоты (2 - 10 м);
• значительной годовой неравномерностью дебита рек.
Указанные факторы осложняют требуют детального обоснования использования энергии рек. В области действует лишь одна ГЭС - Верхотурская установленной мощностью 7 МВт.
Однако научные разработки последних лет по совершенствованию энергетической техники для мини и микро ГЭС позволяют ставить вопрос о восстановлении заброшенных мини ГЭС области (В-Сысертская, Алапаевская, Афанасьевская, Ирбитская - 180 кВт, Речкаловская - 400 кВт и др.) и сооружении ряда новых мини и микро ГЭС /3,4/.
Возможные пункты строительства новых ГЭС на существующих гидротехнических сооружениях приведены в табл.5.
Таблица 5. Перечень гидротехнических сооружений с ожидаемым уровнем мощности выше 1000 кВт
В целом по области существующие гидротехнические сооружения позволяют использовать потенциал мини ГЭС на уровне ~ 200-250 МВт при величине капитальных вложений 10-15 т. руб/кВт. установленной мощности.
Использование потенциала микро ГЭС для рек, берущих начало вблизи 60-го градуса восточного меридиана (отроги Уральского хребта) может быть оценено на уровне от 10 до 50 МВт.
При КИУМ ГЭС на уровне = 0,30÷0,35, характерном для изменения водостока рек области годовое производство электроэнергии возможно в объёмах 300 - 500 млн. кВт. ч, что эквивалентно экономии 100-160 тыс. т. у. т. /год. На территории области имеются предприятия, осуществляющие выпуск оборудования для ГЭС малой мощность (Уралгидромаш, Уралэлектротяжмаш и др.).
Область характеризуется достаточно неравномерным распределением ветровых потоков по территории /5/. В табл.6 приведены данные по среднегодовым и среднемесячным скоростям ветра для ряда точек на территории.
Таблица 6.
К зонам высоких ветров могут быть отнесены вершины отрогов Уральского хребта (г. Благодать, г. Качканар, г. Магнитная и др.), где среднегодовые скорости ветра находятся на уровне (5,5 - 10) м/с и прилегающие к Свердловской области с севера области Северо-Сосьвинской возвышенности, где среднегодовая скорость ветра оценивается на уровне 6-12 м/с.
При указанных скоростных напорах ветра удельная мощность территорий составляет: от 1 МВт/кв.км (скорость ~ 3-4 м/с) до 4 МВт/кв.км (скорость ~ 8 м/с) КИУМ ВЭУ для гористой части территории области ожидается на уровне 0,4-0,5, что соответствует производству электроэнергии от 4 млн кВт. ч/км². год до 16 млн. кВт. ч/км². год.
Для ВЭС расположенной в заселенной равнинной части области при площади 1 км² (10 установок × 100 кВт) годовая экономия топлива составит от 1400 т. у. т. /год на одну ВЭС.
Для ВЭС расположенных на вершинах гор ~ 4000,0 т. у. т. /год.
При площади области ~ 194 тыс. кв.км и использовании под сооружение ВЭС только 10% горной части территории (~ 0,5%) возможная мощность ВЭС оценивается на уровне 200 МВт, с производством электроэнергии 0,6 - 0,8 млрд. кВт. ч/год при уровне капитальных вложений 20-30 тыс. руб. /кВт.
Указанное производство энергии эквивалентно экономии органического топлива в объёмах 0,2 - 0,3 млн. т. у. т. /год.
Целесообразно рассматривать возможность широкого использования ветронасосов в быту и в сельском хозяйстве.
Существующие технологии получения биогаза из отходов животноводства /6/ для Свердловской области позволяют сделать следующую оценку (табл.7).
Таблица 7
Что соответствует экономии органического топлива: ~ 370 тыс. т. у. т. /год.
Несмотря на кажущуюся незначительность этой экономии целесообразно сооружение биогазовых станций на площадках крупных хозяйств (табл.8).
Таблица 8.
Использование биогаза возможно, как для производства тепловой, так и электрической энергии. В последнем случае используются ДВС с генератором электроэнергии.
Запасы торфа на территории области оцениваются на уровне 7678 млн. тон 40% -влажности, что соответствует ~ 2000 млн. т. у. т.
Наибольшие запасы торфа сосредоточены в следующих районах (табл.9).
Таблица 9.
В Свердловской области добыча и использование торфа практически свернуты. Если в 1987 году его добывалось около 3,600 млн. т/год, то в 1999 добыча снизилась до 0,135 млн. т.
Использование торфа сопряжено с необходимостью совершенствования технологии его добычи, осушки, приготовления брикетов и полубрикетов, совершенствования технологий использования (включая газогенераторную технику).
Реально торфяные предприятия области способны при соответствующих условиях обеспечить замену на торф дров и привозного угля для частных потребителей и мелких котельных, а в перспективе и для ряда ведомственных ТЭЦ и ЭС АО "Свердловэнерго".
Возможные объёмы производства торфа в течение 5 лет могут составить не менее 1,5 млн. т. у. т. /год.
Потенциал сбросной теплоты энергетики, промышленный и коммунально-бытовой сфер.
Ежегодные объёмы потребления топлива прямого использования, тепловой и электрической энергии в энергетике, промышленный и коммунально-бытовой сферах области достигают 30-35 млн. т. у. т.
Существующие технологии их использования, приводят к образованию больших количеств низкопотенциальных тепловых сбросов предприятий в окружающую среду через системы оборотного водоснабжения, вентиляции, с теплотой шлаков и золы, сбросных вод электростанций и пр. Энергетический потенциал сбросной теплоты достигает 10-15 млн. т. у. т. /год, т.е. составляет почти половину всего поступающего на территорию топлива.
Имеющийся в мире опыт использования сбросной теплоты при помощи тепловых насосов показывает, что не менее 30% этой энергии может быть возвращено в хозяйственный оборот при капитальных вложениях не более 30 тыс. руб. /кВт (тепл).
Для Свердловской области это соответствует ежегодной экономии 3-5 млн. т. у. т.
Объём производства древесины в Свердловской области составил в 1990 году около 10 млн. м³/год. На всех стадиях заготовки и переработки древесины в виде щепы, стружки, опила и т.п. образуется и практически не используется до 5 млн. м³/год, что эквивалентно около 3 млн. т. у. т. /год.
Использование данного энергетического потенциала возможно лишь при разработке технологий подготовки и использования отходов древесины например путём переработки их в термических газогенераторах или биореакторах.
Возможно прямое ожигание отходов в топках мини и микро ТЭЦ и в котлах с кипящим слоем для ЭС большой мощности.
В настоящее время объёмы лесозаготовки и лесопереработки снизились до ~ 2,50 млн. м³/год из них ~ 1,5 млн. м³/год для целей энергопотребления.
Общий потенциал нетрадиционных и возобновляемых источников энергии и нетрадиционных топлив представлен в табл.10.
Таблица 10.
Выводы.
1. Потенциал НИВИЭ области позволяет снизить потребление органического топлива до 5-8 млн. т. у. т. в год.