Смекни!
smekni.com

Новые реалии в физическом содержании великих уравнений электродинамики Максвелла (стр. 3 из 4)

Соответственно взятие ротора от соотношения (4d) и подстановка в него (4b) с учетом (4c) снова преобразует систему соотношений (4) в еще одну новую систему уравнений классической электродинамики систему уравнений магнитного поля с компонентами напряженности

и векторного потенциала
:

(a) rot

, (b) div
,

(c) rot

, (d) div
. (7)

Сделаем общее математическое замечание о дивергентных уравнениях во всех системах. Как уже говорилось, уравнения div

являются калибровкой, обеспечивающей однозначность функции векторного потенциала
, поэтому, согласно симметрии уравнений в рассматриваемых системах, другие дивергентные уравнения: (1b) при
, (1d), (6b) и (7b) с математической точки зрения также следует считать соответствующими калибровками для функций вихревых полей
и
.

Проведем анализ полученных выше систем уравнений [8], специфика которых состоит в том, что, являясь модификацией уравнений Максвелла электромагнитных полей, они справедливы теперь в таких областях пространства, где присутствуют одновременно поля и их векторные потенциалы, либо только потенциалы. Согласно структуре представленных уравнений, описываемые ими поля распространяются в пространстве в виде волн, скорость которых определяется электрическими и магнитными параметрами среды, заполняющей это пространство:

,
и
. В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений системы, и после чего подставить в него другое роторное уравнение той же системы. В качестве иллюстрации получим, например, для системы (6) волновое уравнение относительно
:

rot rot

grad div
rot
,

где, согласно (6b), div

, а Δ – оператор Лапласа. Таким образом, имеем теперь волновые уравнения не только для электромагнитных полей
и
, но и для их векторных потенциалов
и
в парных комбинациях этих четырех уравнений в зависимости от системы. В итоге возникает физически очевидный, принципиальный вопрос: какие это волны, и что они переносят? Результаты подробного изучения особенностей распространения составляющих единого электродинамического поля в виде плоских волн в материальных средах изложено в публикации [9]. В настоящей работе для нас представляет наибольший интерес прояснить физическое содержание рассматриваемых здесь систем электродинамических уравнений.

Подобно вектору Пойнтинга

плотности потока электромагнитной энергии полей системы уравнений (1) рассмотрим другой потоковый вектор
, который, судя по размерности, описывает электрическую энергию, приходящуюся на единицу площади поверхности. Для аргументированного обоснования возможности существования такого вектора и установления его статуса воспользуемся уравнениями системы (6) и с помощью стандартных вычислений (см. (3)) получим

(8)

- соотношение, описывающее энергетику реализации процесса электрической поляризации среды в данной точке. Как видим, уравнения электрического поля системы (6) описывают чисто электрические явления, в том числе, поперечные электрические волны, переносящие поток электрической энергии.

Аналогичным образом можно ввести еще один потоковый вектор

, размерность которого соответствует поверхностной плотности магнитной энергии в соотношении, описывающем энергетику процесса намагничивания среды в данной точке:

.(9)

Итак, уравнения магнитного поля системы (7) рассматривают чисто магнитные явления, устанавливают реальность поперечных магнитных волн, переносящих поток магнитной энергии.

Полученные соотношения баланса (8) и (9) описывают энергетику условий реализации обычной электрической или магнитной поляризации среды (первое слагаемое правой части соотношений) посредством переноса извне в данную точку потоком вектора

или
соответствующей энергии. Однако эти соотношения устанавливают также наличие эффектов динамической поляризации вещества (в частности, проводящих сред) за счет действия переменных во времени электрической или магнитной компонент поля электромагнитного векторного потенциала. Надо сказать, что явления динамической поляризации уже имеют прямое экспериментальное воплощение: это эффекты электродинамической индукции в металлах [10] и динамического намагничивания в ферритах и магнитоупорядоченных металлах [11].

Подобно соотношениям (8) и (9) из уравнений системы (5) следует соотношение баланса передачи в данную точку момента импульса, реализуемого компонентами поля электромагнитного векторного потенциала посредством потокового вектора

:

.(10)

Здесь момент электромагнитного импульса в проводящей среде создается электрической компонентой векторного потенциала, стационарной в том числе, а в среде диэлектрика – переменными во времени электрической и магнитной компонентами.

Как видим, именно уравнения поля электромагнитного векторного потенциала (5) описывают волны, переносящие в пространстве поток момента импульса, которые со времен Пойнтинга безуспешно пытаются описать с помощью уравнений электромагнитного поля (1) (см. анализ в [3]). Существенно, что сами по себе волны векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях (4) поля

и
отсутствуют. В этой связи укажем на пионерские работы [12], где обсуждается неэнергетическое (информационное) взаимодействие векторного потенциала со средой при передаче в ней потенциальных волн и их детектирование с помощью эффекта, аналогичного эффекту Ааронова-Бома. Однако, как иллюстрирует система соотношений (4) и показано в работе [9], распространение волн электромагнитного векторного потенциала в принципе невозможно без присутствия их сопровождающих волн электромагнитного поля, соответственно, наоборот.

Таким образом, соотношения (4) действительно следует считать системой уравнений вихревого векторного четырехкомпонентного единого электродинамическогополя, базирующегося на исходной своей составляющей - поле электромагнитного векторного потенциала, состоящего из двух взаимно ортогональных электрической

и магнитной
векторных полевых компонент. При этом поле векторного потенциала своим существованием реализует функционально связанные с ним другие составляющие единого поля: электромагнитное поле с векторными компонентами

и
, электрическое поле с компонентами
и
, магнитное поле с компонентами
и
. Отмеченная здесь структура и взаимосвязь составляющих единого электродинамического поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих единого поля и анализ физического содержания таких уравнений изложены в работе [13].