СОДЕРЖАНИЕ
ВВЕДЕНИЕ 4
1. ОБЩАЯ ХАРАКТЕРИСТИКА ВНУТРЕННЕГО ФОТОЭФФЕКТА 5
2. ИСПОЛЬЗОВАНИЕ ВНУТРЕННЕГО ФОТОЭФФЕКТА ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН 12
2.1 Фотоэлектрические преобразователи 12
2.2 Датчики положения 19
2.3 Двухкоординатное измерение положения 22
2.4 Датчики шероховатости 24
ЗАКЛЮЧЕНИЕ 26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 27
Одним из наиболее важных приоритетов в развитии человечества является открытие и использование новых видов энергии, одним из которых стало открытие явления фотоэффекта. С 1876 года, когда в Великобритании был создан первый фотоэлемент, до наших дней ученые работают над совершенствованием этой технологии, повышением ее эффективности. Однако подлинная история использования полупроводниковых преобразователей началась в 1958-м, когда на третьем советском в качестве источника энергии были установлены солнечные кремниевые батареи, с тех пор основной источник энергии в космосе. В 1974 году ученые приступили к промышленному производству солнечных батарей на гетероструктурах, тогда же этими батареями стали оснащаться искусственные спутники. Сейчас в мире идет работа над удвоением мощности солнечных фотоэлектрических установок. Это наиболее перспективный способ получения и использования энергии на Земле. Пока, правда, это самый дорогой вид энергии, но в перспективе ее стоимость будет сравнима с той, что вырабатывается на атомных станциях. Тем более что такая энергия экологически безопасна и запасы ее практически неисчерпаемы. По оценкам специалистов, в 2020 году до 20 % мировой электроэнергии будет производиться за счет фотоэлектрического преобразования солнечной энергии в машиностроении, приборостроении медицине, космосе и других отраслях. Уже сейчас много направлений, на которых солнечная энергия находит широкое применение-это мобильная телефонная связь, которой необходима автономное питание антенн при отсутствии линий электропередач.[1]
Внутренний фотоэффект представляет собой процесс образования свободных носителей заряда внутри вещества при воздействии излучения. Взаимодействие излучения с веществом (далее будемрассматривать только полупроводники) может происходить без изменения или с изменением энергии падающего кванта. В этом случае лишь поглощение фотонов представляет интерес. При этом, однако, возможно такое поглощение, при котором энергия фотона переходит в упругие колебания кристаллической решетки, иными словами, в энергию фононов, в результате поглощение излучения вызывает повышение температуры тела.
Этот эффект находит и практическое применение в одной из разновидностей фотоприемников - болометрах, но из-за невысокой чувствительности и низкого быстродействия болометры в оптоэлектронике не применяются. Лишь непосредственное возбуждение атомов, заключающееся в появлении дополнительных носителей заряда (фотоносителей), относится к фотоэффекту. Фотоэффект проявляется в электронных переходах двух типов: собственных (фундаментальных) и примесных (рисунок 1.1).
Собственные переходы (или собственная проводимость) сопровождаются увеличением концентрации свободных носителей обоих знаков - и электронов, и дырок. Математическое условие начала возникновения собственной фотопроводимости записывается так:
, (1.1)где hv- энергия кванта излучения.
При выполнении этого условия вблизи границы поглощения, соответствующей равенству в (1.1), зависимость коэффициента поглощения от энергии кванта для прямозонных и непрямозонных полупроводников соответственно имеет вид:
(1.2) (1.3)где А и В - константы;
- энергия фонона, а выбор знака в (1.3) зависит от того, идет ли процесс с отдачей энергии фонону (плюс) или с получением энергии от него (минус).Рисунок 1.1 - Собственные (1) и примесные (2, 3) фотопереходы электронов в полупроводнике (Ел - уровень ловушки)
Рисунок 1.2 - Спектральные зависимости обратного коэффициента поглощения (
) некоторых полупроводниковПрямозонные переходы происходят без изменения импульса электрона (
), т.е. для их осуществления не требуется участия какого-либо третьего тела, а необходима лишь встреча электрона и дырки; такие переходы представляют собой вероятностные процессы первого порядка. При непрямозонных переходах обязательна передача части импульса фонону ( ). Это процессы второго порядка, и их вероятность намного меньше (на несколько порядков), чем прямозонных переходов.Равенство в (1.1) определяет красную границу фотоэффекта
, (1.4)где λгр, мкм; Eg, эВ.
Вблизи этой границы χ растет очень быстро, изменяясь, как правило, на 3-4 порядка при увеличении энергии кванта на 0,1 эВ (рисунок 1.2). При выполнении условия (1.1) каждый поглощенный фотон порождает одну пару электрон - дырка или, иными словами, квантовая эффективность η=l. Это положение сохраняется при повышении энергии квантов, и лишь при hυ> (2...3)Egквантовая эффективность начинает возрастать. При очень больших энергиях квантов на генерацию пары носителей в среднем затрачивается порция энергии около 3Eg. Таким образом, энергетически наиболее выгоден фотоэффект, вызываемый квантами с hv≈Eg; при преобразовании высокоэнергетических квантов (коротковолновое излучение) значительная часть их энергии переходит в тепло.
Край спектра поглощения полупроводника λгр может смещаться в длинноволновую сторону при приложении электрического поля; это явление известно как эффект Келдыша - Франца. Действие электрического поля приводит к наклону энергетических зон в пространстве, так что при энергии квантов hv<Eg электрон может оторваться от атома вследствие туннелирования между состояниями валентной зоны и зоны проводимости, разделенными в кристалле малым расстоянием Δχ (рисунок 1.3). Расчет показывает, что ширина запрещенной зоны уменьшается пропорционально квадрату напряженности электрического поля; этот сдвиг для арсенида галлия около 10-15 эВ∙В-2∙см-2. При реально достижимых электрических полях удается сместить край поглощения на несколько сотых долей электрон-вольта, что по абсолютной величине мало, но может приводить к изменению коэффициента поглощения на три порядка. Эффект Келдыша - Франца используется для создания высокоскоростных модуляторов света.
Рисунок 1.3 - Энергетическая диаграмма полупроводника при воздействии сильного электрического поля и квантовый переход электрона из валентной зоны в зону проводимости, иллюстрирующий эффект Келдыша-Франца
Примесное поглощение (примесная фотопроводимость) имеет место тогда, когда энергии квантов не хватает для образования электронно-дырочной пары, но ее достаточно, чтобы возбудить примесный атом до состояния, когда образуется свободный электрон и связанная дырка или свободная дырка и связанный электрон (см. рисунок 1.1). Первое отличие примесной фотопроводимости от собственной состоит в меньшей энергии поглощаемых квантов; для очень мелких акцепторных и донор-ных уровней энергия этих квантов может быть в десятки и сотни раз меньше Eg. В этой связи примесная фотопроводимость открывает широкие возможности создания фотоприемников ИК-диапазона (включая дальний ИК- и субмиллиметровый радиодиапазон).
Второе отличие состоит в том, что примесное поглощение ведет к генерации лишь одного типа носителей - электронов или дырок, и третье - в том, что эффективность примесного поглощения значительно меньше, чем собственного: в типичных случаях концентрация примесных атомов значительно меньше (на 6-8 порядков), чем атомов самого полупроводника. Отсюда следует, что для реализации поглощения на примесях необходимо использовать полупроводники большой толщины, а это всегда ведет к нежелательному увеличению длительности релаксационных процессов. Таким образом, примесное поглощение следует использовать лишь в тех случаях, когда не удается подобрать полупроводник с собственным поглощением в той же области спектра. Длинноволновая граница примесного фотоэффекта также определяется формулой (1.4), если в ней Еgзаменить на энергетический зазор между примесным центром и разрешенной зоной, с которой осуществляется обмен носителями заряда.
Кроме рассмотренных собственного и примесного поглощений имеется еще несколько механизмов взаимодействия квантов излучения с веществом, проявляющихся в фотоэффекте. Прежде всего необходимо отметить поглощение на свободных носителях заряда. Это приводит к перемещению носителя внутри разрешенной зоны на более высокий энергетический уровень, т. е. к так называемому разогреву носителей (например, электронов в зоне проводимости). Если обмен энергией между «горячим» электроном и зоной осуществляется быстро, то эта избыточная энергия переходит в тепло и фактически поглощенные таким образом кванты вклада в фотоэффект не дают. При типичных значениях Еg ≈ 1эВ поглощение на свободных носителях может стать заметным на фоне собственного поглощения лишь при концентрациях носителей не менее 1019 – 1020 см-3, т. е. вотносительно редких случаях. Если каким-то образом обмен энергией между «горячими» электронами и кристаллической решеткой замедлить (например, путем глубокого охлаждения), то это приведет к тому, что их подвижность будет отличной от подвижности обычных электронов проводимости. Это значит, что согласно (рисунок 1.1) изменится и проводимость образца. Подобный эффект, известный как μ- фотопроводимость, может использоваться для создания неизбирательных фотоприемников дальнего ИК-диапазона; в оптоэлектронике реального применения он не находит.