Смекни!
smekni.com

Воздействия на туманы с помощью тепловых источников (стр. 2 из 3)

Дополнительные осадки можно оценить в тоннах воды, тогда за два первых сезона воздействий дополнительно выпало от 2,6 до 3,4 млн. тонн, а в 3 последующих – 4–6 млн. тонн. В отдельных опытах выпадало от 35 до 1400 тыс. тонн воды.

В заключение п. 10.2.2 надо отметить, что заставить облака работать в качестве эффективных генераторов дополнительной влаги в опытах, проведенных на Украинском ЭМП, не удалось. К тому же всегда до конца не ясна судьба облаков, если бы они не подвергались воздействию. Вполне возможно, что они могли бы сами дать осадки, пусть даже за пределами полигона. Пока не найдено надежных количественных критериев по оценке дополнительных сумм осадков от воздействий, даже если сам факт их успешности налицо.

Аналогичные результаты получены на метеорологических полигонах в других странах. Предельно пессимистически в этом смысле звучат выводы Комитета по атмосферным исследованиям США (1964 г.): «Для проверки гипотезы о том, что засев облаков оказывает заметное положительное влияние на осадкообразование, было проведено много статистических исследований, основанных на экспериментальных данных. Почти все результаты этих исследований были отрицательными: они не смогли доказать гипотезу о положительном влиянии засева облаков реагентами на выпадение осадков. Более того, можно утверждать, что чем тщательнее были исследования, тем меньшую уверенность в положительных результатах они давали.

Пятнадцать лет сложных и дорогостоящих исследований, давших пока незначительный результат, заняла попытка быстро научиться управлять погодой. Ни один ученый не мог ожидать такого исхода 15 лет назад».

Однако этот весьма пессимистический вывод должен, прежде всего, направить метеорологическую науку на отказ от ожидания легких результатов и на необходимость обстоятельных исследований.

Рассеяние переохлажденных слоистообразных облаков и туманов на больших площадях

Воздействия на слоистообразные облака и туманы с целью их рассеяния в течение 15 лет проводились в широких масштабах на Украинском ЭМП с 1959 г. В результате была отработана методика таких воздействий и получены положительные результаты воздействий. Остановимся кратко на полученных основных методических положениях этих исследований.

Рассеяние слоистообразных облаков на больших площадях. Цель исследований состояла в изучении возможностей рассеяния облаков St–Sc над площадями до 10000 км2 (квадрат со стороной до 100 км) и длительного поддержания заданного района раскрытым от облаков. Для этого приведено 54 эксперимента при температуре в слое облаков ниже –3ºС, мощности от 150 до 680 м, водности от 0,03 до 0,33 г/м3 и скорости ветра от 2 до 15 м/с. Во всех проведенных экспериментах с использованием СО2 облака в зоне воздействия были полностью рассеяны.

Оказалось, что в среднем время образования просвета после засева составляет 20 мин, а ширина зоны кристаллизации (рассеяния) в этот момент – 1800 м. Время расширения полосы рассеяния в среднем равно 30 мин. для облаков, которые восстанавливаются после воздействия, и 35 мин., которые не восстанавливаются. В среднем ширина полосы рассеяния получается равной 2700 м (2500–2800 м).

Поэтому для облаков, находящихся в стадии развития, удаление линии воздействия от раскрываемого района должно соответствовать 30-минутному переносу облаков, а интервал между линиями должен составлять 2500 м (рис. 10.6). Для облаков, находящихся в стадии разрушения, которые не восстанавливаются после воздействия, удаление линии засева от раскрываемого района должно составлять 35-минутному переносу, а интервал между линиями составлять 2800 м. В этих условиях происходит слияние полос отдельных линий и образование сплошной зоны рассеяния. При этом слияние полос в общую зону характеризует ту стадию процесса, когда капельно-жидкая влага в зоне воздействия отсутствует вследствие полной ее кристаллизации. Под зоной воздействия в течение 15–20 мин. отмечается выпадение слабых осадков, а в зоне сохраняется кристаллическая дымка в течение 40–50 мин. после засева, если облака восстанавливаются, и 50–60 мин., если не восстанавливаются.


Сама линия засева должна быть перпендикулярной ветру на верхней границе облаков, т.е. направлению их переноса.

Засев должен производиться вдоль постоянной относительно земли линии. Время нахождения самолета на линии засева (

) и ее длины (
) определяются соотношениями

=
;
= Vс
,

где

lкр– ширина зоны кристаллизации,
– время разворота самолета, Vв – скорость ветра, Vс – скорость самолета.

В табл. 10.2 приведено время нахождения самолета на линии засева

в зависимости от Vви ширины зоны кристаллизации
lкр.

Таблица 10.2

Время

(мин.– сек.) в зависимости от Vв и
lкр
Vв , м/с Ширина зоны кристаллизации
lкр, м
2000 2500 3000 3500
468101215 7–354–453–252–352–001–30 9–106–004–103–102–301–45 11–207–105–053–503–002–10 13–158–306–054–353–352–35

На ЭМП использовался самолет ИЛ–14 со скоростью Vс = 240 км/ч. Длина линии засева составляла

= 15–20 км, что определяло время нахождения самолета на ней в 4–5 мин. Это обеспечивало возможность воздействия при
lкр = 2000 м при скоростях ветра 6–7 м/с, а при
lкр = 3000 м при скоростях 8–10 м/с. При скоростях ветра более 10 м/с засев следует проводить двумя самолетами.

Рассеяние туманов и низких облаков на больших площадях. Такое рассеяние наиболее эффективно осуществлять над аэродромами с самолета, обеспечив его сопровождение техническими средствами. Количество линий засева определяется необходимыми размерами площади раскрытия от тумана. Для полного рассеяния туманов в зоне над аэродромами расстояние между линиями засева не должно превышать ширину зоны рассеяния, образующиеся от одной линии (

lкр), которая составляет 2–3 км. Если температура тумана близка к пороговой для СО2 (–3ºС), то интервал должен быть уменьшен до 1–1,5 км.

Начальное положение линии засева должно выбираться так, чтобы в момент полного рассеяния зона раскрытия находилась над ВПП. Это означает, что линия засева должна располагаться на удалении 30–40-минутного переноса облаков или тумана от ВПП. При этом важно выдерживать постоянную скорость полета самолета вдоль фиксированной линии засева относительно земной поверхности, расположенной нормально к переносу тумана или низких облаков. Для сопровождения самолета обязательно используется посадочный радиолокатор и приводные радиостанции (напомним, что самолет выполняет засев над верхней границей тумана в отсутствии видимости земной поверхности).

Наиболее благоприятные для рассеяния тумана условия создаются при штиле или при слабых ветрах (до 3 м/с). Полет в таких случаях производится непосредственно над аэродромом или вблизи него (рис.10.7).При скоростях 4 м/с и выше применяется схема линейного засева (рис. 10.8), аналогичная применяемой при рассеянии Sc–St. Длина линии засева

не должна превышать 12–16 км даже при самых неблагоприятных условиях (больше скорости ветра с направлениями близкими к 45º по отношению к ВПП).

В табл. 10.3 приведены данные о необходимой продолжительности воздействий и числе линией засева в зависимости от скорости ветра Vв, длины линий

и интервала между ними (затем требуется перерыв в воздействии или его продолжение).