Смекни!
smekni.com

Динамика работы и расчет времени срабатывания электромагнита постоянного тока с пользованием математического пакета MathCad в среде Windows (стр. 2 из 3)

Рис.2.2 График изменения тока в катушке электромагнита, включенной непосредственно на напряжение питания

Определение времени трогания якоря электромагнита:

;

Т.е якорь начинает двигаться через 0,042с с момента подачи U.

Определение тока трогания:

Это же подтверждается и графиком (рис.2.3.) построенным по уравнению

с использованием Mathcad

Рис.2.3. График изменения тока в катушке электромагнита, включенной непосредственно на напряжение питания и ток трогания.

2.3 Уравнение динамики и время трогания электромагнита постоянного тока при включении по схеме ускоренного процесса срабатывания (схема рис.2.1,б):

Чем меньше активное сопротивление цепи, тем быстрее срабатывает электромагнит. Для уменьшения сопротивления R при неизменной индуктивности Lи неизменных размерах электромагнита применяется добавочный резистор Rдоб, который шунтирован размыкающим контактом или конденсатором Сдоб.

Уравнения, описывающие схему :

Запишем уравнение данной схемы относительно тока в операторной форме:

Для обеспечения апериодического переходного процесса необходимо, чтобы корни знаменателя были вещественными. Это возможно, когда:

. Это уравнение решается в MACHCAD относительно С. При
( мкф ) апериодический процесс изменения тока в катушке будет оптимальным.

Так для численных данных параметров схемы Сопт будет иметь численное значение в фарадах:


2.3.1 Определение изменения тока и напряжения во времени численным методом

Численный метод состоит в составлении системы дифференциальных уравнений, описывающей работу электромагнита. Далее эта система решается с помощью MACHCAD, с использованием матрицы системы. Матрица системы составляется из коэффициентов дифференциальных уравнений. Отдельно составляется матрица начальных условий.

Уравнение

можно записать и в виде уравнений в нормальной форме Коши:

СПРАВКА: В Mathcad 11 имеются три встроенные функции, которые позволяют решать задачу Коши различными численными методами.

· rkfixed(y0, t0, t1, N, D) — метод Рунге-Кутты с фиксированным шагом,

· Rkadapt(y0, t0, t1, N, D) — метод Рунге-Кутты с переменным шагом;

· Buistoer(y0, t0, t1, N, D) — метод Булирша-Штера;

o у0 — вектор начальных значений в точке to размера NXI;

o t0 — начальная точка расчета, t1 — конечная точка расчета,

o N — число шагов, на которых метод находит решение;

o D — векторная функция размера NXI двух аргументов — скалярного t и векторного у. При этом у — искомая векторная функция аргумента t того же размера NXI.

Воспользуемся функцией Rkadapt(y0, t0, t1, N, D) -получим матрицу решения системы обыкновенных дифференциальных уравнений численным методом Рунге-Кута на интервале от t0 до t1 (зададим от 0 до 5 сек) при N фиксированных шагах решения (пусть N=1000), вектор заданных начальных условий X0 (нулевые условия). Сформируем матрицу системы дифференциальных уравнений 2-го порядка.


Применим функцию: Rkadapt

-Интервал времени- нулевой столбец матрицы решений S.

-Значение искомой величины тока- первый столбец матрицы решений S.

напряжение на конденсаторе - второй столбец матрицы S

И так далее 1000 значений (N=1000)

Рис. 2.4. Графики зависимости тока в катушке электромагнита и напряжения на конденсаторе от времени при ускоренном срабатывании электромагнита (численное решение)

2.3.2 Решение дифференциальных уравнений с помощью преобразований Лапласа

Преобразование Лапласа позволяет решать дифференциальные уравнения высоких порядков в более лёгкой форме. При переходе в комплексную область дифференцирование заменяется степенью. Для обратного перехода используется функция Invlaplace.

Рис.2.5. Графики зависимости тока в катушке и напряжения на конденсаторе от времени при ускоренном срабатывании электромагнита ( с помощью преобразования Лапласа)


2.3.3 Решение с использованием передаточной функции.

Используя обратное преобразования Лапласа к уравнению для тока определим зависимость тока в катушке электромагнита от времени. Будем полагать, что напряжение, приложенное к катушке электромагнита, является ступенчатой функцией времени. Используя ЭВМ, получим:

Рис.2.6. График зависимости тока от времени при ускоренном срабатывании электромагнита (решение с помощью передаточной функции)

Рис.2.7. График изменения напряжения на катушке электромагнита, полученный в результате решения с использованием преобразования Лапласа.

Решение наглядно показывает, что установившееся значение напряжения =110,205 В

Рис. 2.7. Значение установившегося напряжения на катушке электромагнита.


2.4 Уравнение динамики и время трогания электромагнита постоянного тока при включении по схеме замедления процесса срабатывания (рис. 2.1,в)

2.4.1 Определение изменения тока и напряжения во времени численным методом

Уравнения, описывающие работу электросхемы:

Воспользуемся функцией Rkadapt (y0, t0, t1, N, D) -получим матрицу решения системы обыкновенных дифференциальных уравнений численным методом Рунге-Кута на интервале от t0 до t1 (зададим от 0 до 5 сек) при N фиксированных шагах решения (пусть N=1000), вектор заданных начальных условий X0 (нулевые условия). Сформируем матрицу системы дифференциальных уравнений, соответствующую заданному дифференциальному уравнению 2-го порядка.


Т-нулевой столбец, i- первый столбец, Uс- второй столбец.

Рис.2.8. Графики зависимости тока в катушке электромагнита и напряжения на конденсаторе от времени при замедленном срабатывании электромагнита (численный метод решения дифференциальных уравнений)