Смекни!
smekni.com

Дифракція світла (стр. 2 из 2)

Таким чином, якщо в передній фокальній площині об'єктива розташувати плоский транспарант із функцією коефіцієнта пропущення t (х, у) і освітити транспарант плоскою монохроматичною хвилею, то в задній фокальній площині об'єктива утвориться розподіл комплексної амплітуди світлового збурювання, зв'язаний з t (х, у) перетворенням Фур'є

{t (х, у)}. Ця важлива властивість об'єктива широко використовується в багатьох сучасних пристроях оптичної обробки інформації.

3. Дифракція на отворах різної форми

Досліджуємо картини дифракції Фраунгофера від отворів різної форми, що спостерігаються при нормальному висвітленні отворів монохроматичним світлом. Відносний розподіл інтенсивності в дифракційних картинах обчислимо за допомогою дифракційного інтеграла Фраунгофера (6). Розглянемо спочатку випадок дифракції на прямокутному отворі (рис. 7, а). Якщо початок координат розташувати в центрі прямокутника, а осі Х і Y направити паралельно його сторонам, то дифракційний інтеграл Фраунгофера (6) приймає вигляд:

.

Обидва одномірних інтеграла розв¢язуються однотипно. Запишемо, наприклад, розв’язання першого інтеграла:

.

Рисунок 7- Дифракція на прямокутному отворі: а- форма отвору, б- просторовий спектр

Остаточне вираження для розподілу інтенсивності в дифракційній картині від прямокутного отвору можна записати у такому вигляді:

,

де I0- інтенсивність світла, що йде в напрямки пучка, що висвітлює, (недифраговане світло).

Співмножники, що входять у формулу (9), типу функції

мають головний максимум у = 1 при х = 0 і мінімуми, рівні нулю, при х = ±
, ±2
, ±З
, ... . Розподіл інтенсивності в дифракційній картині на прямокутному отворі представлене на рис. 7, б. Інтенсивність світла I (р, q) дорівнює нулю уздовж двох рядів ліній, рівнобіжних сторонам прямокутника. Положення цих ліній знаходиться прирівнюванням нулю чисельників у квадратних дужках формули (9) і визначається зі співвідношень:

р = ± ml/а;q = ± nl/b,

де m, n = 1, 2, 3, ...

Усередині кожного прямокутника, утвореного сусідніми парами темних смуг, інтенсивність досягає максимумів, що, однак, складають лише маленьку частину інтенсивності центрального максимуму і швидко зменшуються в міру вилучення від центра. Більшому розміру отвору відповідають менші ефективні розміри дифракційної картини.

Якщо а >> b, то прямокутний отвір називають щілиною. Просторовий спектр при а ®¥ по координаті р (рис. 7, б) стискується до нуля. Тому розподіл інтенсивності в дифракційній картині від щілини може бути представлений одномірною залежністю (рис. 8):

,

де b- ширина щілини.

Очевидно, що q = соs (90° - y) = sin (y), де y- кут дифракції, відлічуваний від осі z. Перший дифракційний мінімум має місце при кутах дифракції, обумовлених з рівності

sin(y) = ±l/b.

Основна частина потоку зосереджена в межах кута y = ± arcsin (l/b). Відношення інтенсивностей першого максимуму до наступного задається послідовністю чисел І0: І1: І2: ... = 1000: 47: 17: ...


Рисунок 7- Дифракція на щілині

Рисунок Дифракція на круглому отворі: а- форма отвору, б- дифракційна картина Эйри; в- графік відносного розподілу інтенсивності в дифракційній картині

Аналогічно можна досліджувати дифракцію Фраунгофера на круглому отворі (рис. 9). У фокальній площині об'єктива (див. рис. 5, б) спостерігається центральний світлий диск, оточений концентричними світлими і темними дифракційними кільцями. Точний розподіл інтенсивності в дифракційній картині можна одержати за допомогою дифракційного інтеграла Фраунгофера (6) у полярній системі координат. Графік перетинання цього розподілу представлений на рис. 9, в. Перший мінімум освітленості (радіус першого темного кільця) спостерігається при куті дифракції, обумовленої за формулою:

sin(y) = 1,22l/D,(10)

де D- діаметр отвору.

Інтенсивність світлих кілець швидко зменшується зі збільшенням радіуса, і неозброєним оком можна спостерігати лише одне чи два перших кільця. Ефективні розміри дифракційної картини обернено пропорційні діаметру отвору. У середині дифракційної картини, обмеженої другим темним кільцем, концентрується більш 90 % світлової енергії, що проходить крізь отвір. Дифракційну картину Фраунгофера на круглому отворі часто називають картиною Ейрі.

Рисунок 10- Дифракція на N рівновіддалених щілинах: а- схема спостереження дифракційної картини; б- графік відносного розподілу інтенсивності.

Важливу роль відіграє дифракція світла на правильній структурі з N рівнобіжних рівновіддалених щілин, називаним амплітудними дифракційними рішітками (рис. 10). При освітленні решіток плоскою монохроматичною хвилею має місце дифракція світла на кожній щілині. Крім того, всі дифраговані хвилі когерентні, вони інтерферують між собою, у результаті чого утвориться сумарна дифракційна картина від усіх щілин. Розподіл комплексної амплітуди в дифракційній картині можна одержати, як і у випадку однієї щілини, за допомогою одномірного дифракційного інтеграла Фраунгофера, виконуючи інтегрування по N щілинах. Переходячи до інтенсивності світла, можна одержати такий вираз:


,(10)

де b- ширина кожної щілини; d- відстань між щілинами (період дифракційних решіток).

Перший співмножник визначає інтенсивність випромінювання в напрямки y = 0, тобто інтенсивність недифрагованого світла. Другий співмножник характеризує розподіл інтенсивності світла в дифракційній картині від однієї щілини, а третій співмножник враховує вплив інтерференції між усіма дифрагованими пучками. При виконанні умови

dsin(y) = ml,(11)

де m = 0, ±1, ±2, ±3, ..., третій співмножник у формулі (10) приймає максимальні значення.

Відповідні значення інтенсивності I(y) називають головними максимумами. Утворення головних максимумів обумовлене тим, що дифрагованi хвилі, що випускаються двома еквівалентними точками сусідніх щілин, при виконанні умови (11) мають оптичну різницю ходу, кратну цілому числу довжин хвиль.

Графік відносного розподілу інтенсивності в дифракційній картині на N рівновіддалених щілинах представлений на рис. 10, б. Між сусідніми головними максимумами виникають N - 1 мінімумів, між якими знаходяться маленькі по інтенсивності побічні максимуми. У сучасних дифракційних ґратах число щілин N досягає великих значень, наприклад 200 000, і головні максимуми стають дуже різкими і розділяються широкими проміжками, де інтенсивність світла можна вважати практично рівної нулю. Обгинаюча головних максимумів є крива, що відповідає відносній інтенсивності світла в дифракційній картині від однієї щілини. Підставивши (11) у (10), одержимо такий вираз для інтенсивності світла в головних максимумах:

.

Якщо mb/d- ціле число, то Imax = 0. Це відповідає збігу умови утворення головних максимумів на N щілинах з умовою утворення дифракційного мінімуму на одній щілині. Наприклад, при b/d = 1/4 кожен четвертий головний максимум у дифракційній картині випадає.

Отримані результати справедливі для решіток з рівномірним пропущенням по ширині щілини. Якщо коефіцієнт пропущення в границях щілини перемінний, то формула (10) може мати інший вигляд. Так, при синусоїдальному коефіцієнті пропущення виникають тільки нульовий і два перших (m = ±1) порядки дифракційного спектра. Сучасні дифракційні решітки являють собою систему профільованих штрихів, у яких відсутні плоскі проміжки. Такі решітки називають фазовими. В окремих елементах профільованого штриха створюються різні запізнювання по фазі. що дозволяє сконцентрувати велику частину енергії, що падає на граті, у спектрі одного порядку. Дифракційні решітки, застосовувані у видимій області електромагнітного випромінювання, мають частоту штрихів більш 2400 лін/мм.