ЖИДКИЕ КРИСТАЛЛЫ
Сказать о каком-то веществе просто жидкий кристалл, это еще слишком мало. И если неспециалистов вполне удовлетворяет общий термин жидкий кристалл, то специалисту требуется дать более детальную информацию. Здесь ситуация похожа на ту, которая возникла бы с вами в столовой или ресторане, если бы вам в качестве третьего блюда предложили бы просто жидкость, не конкретизируя, что это такое. Несомненно, большинство из вас такое общее определение третьего блюда не удовлетворило бы, и каждый в зависимости от своего вкуса потребовал бы что-либо более определенное — чай, кофе, молоко и т. д. Так же дело обстоит для специалистов и с жидкими кристаллами, поскольку под этим термином, как уже бегло говорилось выше, скрывается большое количество весьма отличающихся друг от друга жидкокристаллических фаз.
Все чаще на страницах научных, а последнее время и научно-популярных журналов появляется термин «жидкие кристаллы» (в аббревиатуре ЖК) и статьи, посвященные жидким кристаллам. В повседневной жизни мы сталкиваемся с часами, термометрами на жидких кристаллах. Что же это за вещества с таким парадоксальным названием «жидкие кристаллы» и почему к ним проявляется столь значительный интерес? В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материального производства. В этом отношении не являются исключением и жидкие кристаллы. Интерес к ним, прежде всего, обусловлен возможностями их эффективного применения в ряде отраслей производственной деятельности. Внедрение жидких кристаллов означает экономическую эффективность, простоту, удобство.
Прежде чем рассказывать о конкретных областях применения жидких кристаллов, необходимо сказать несколько общих слов о том, что же это все-таки такое — жидкие кристаллы. Тем более, что в ближайшее время изделия, содержащие жидкокристаллические элементы, будут так же широко распространены, как в свое время были распространены устройства, содержащие электронные лампы или транзисторы.
Жидкий кристалл — это специфическое агрегатное состояние вещества, в котором оно проявляет одновременно свойства кристалла и жидкости. Сразу надо оговориться, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Большинство веществ может находиться только в трех, всем хорошо известных агрегатных состояниях: твердом или кристаллическом, жидком и газообразном. Оказывается, некоторые органические вещества, обладающие сложными молекулами, кроме трех названных состояний, могут образовывать четвертое агрегатное состояние — жидкокристаллическое. Это состояние осуществляется при плавлении кристаллов некоторых веществ. При их плавлении образуется жидкокристаллическая фаза, отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость. Чем же жидкий кристалл отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жидкостью, он обладает свойством, характерным для кристаллов. Это — упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не такое полное, как в обычных кристаллах, но, тем не менее, оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное пространственное упорядочение молекул, образующих жидкий кристалл, проявляется в том, что в жидких кристаллах нет полного порядка в пространственном расположении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кристаллической решетки. Поэтому жидкие кристаллы, подобно обычным жидкостям, обладают свойством текучести.
Обязательным свойством жидких кристаллов, сближающим их с обычными кристаллами, является наличие порядка пространственной ориентации молекул. Такой порядок в ориентации может проявляться, например, в том, что все длинные оси молекул в жидкокристаллическом образце ориентированы одинаково. Эти молекулы должны обладать вытянутой формой. Кроме простейшего названного упорядочения осей молекул, в жидком кристалле может осуществляться более сложный ориентационный порядок молекул.
В зависимости от вида упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и холестерические.
Исследования по физике жидких кристаллов и их применениям в настоящее время ведутся широким фронтом во всех наиболее развитых странах мира. Отечественные исследования сосредоточены как в академических, так и отраслевых научно-исследовательских учреждениях и имеют давние традиции. Широкую известность и признание получили выполненные еще в тридцатые годы в Ленинграде работы В.К. Фредерикса к В.Н. Цветкова В последние годы бурного изучения жидких кристаллов отечественные исследователи также вносят весомый вклад в развитие учения о жидких кристаллах в целом и, в частности, об оптике жидких кристаллов. Так, работы И.Г. Чистякова, А.П. Капустина, С.А. Бразовского, С.А. Пикина, Л.М. Блинова и многих других советских исследователей широко известны научной общественности и служат фундаментом ряда эффективных технических приложений жидких кристаллов.
Об успехах отечественной промышленности в освоении выпуска продукции, в которой существенным элементом являются жидкие кристаллы, говорит присуждение в 1983 году Государственной премии СССР большой группе работников науки и техники за разработку и внедрение в народное хозяйство индикаторных устройств. Основными элементами этих индикаторных устройств, совершенные технические характеристики которых послужили основанием для присуждения премии, являются жидкокристаллические вещества. Присуждение этой премии символизирует плодотворный союз науки и производства в деле технических приложений жидких кристаллов. Тут же следует сказать, что среди лауреатов, представителей науки, — В.Н. Цветков, ветеран научных исследований жидких кристаллов.
Пока мы просто декларировали необычные свойства жидких кристаллов. Как же они были обнаружены? Ведь, не обладая современной огромной информацией о строении материи, очень трудно поверить, что такие, казалось бы, взаимно исключающие друг друга свойства могут проявляться у одного вещества. Поэтому, вероятно, исследователи уже очень давно сталкивались с жидкокристаллическим состоянием, но не отдавали себе в этом отчета. Тем не менее, существование жидких кристаллов было установлено очень давно, почти столетие тому назад, а именно в 1888 году.
Первым, кто обнаружил жидкие кристаллы, был австрийский ученый-ботаник Рейнитцер. Исследуя новое синтезированное им вещество холестерилбензоат, он обнаружил, что при температуре 145° С кристаллы этого вещества плавятся, образуя мутную сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется, т. е. начинает вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холестерилбензоат обнаруживал в мутной фазе. Рассматривая эту фазу под поляризационным микроскопом, Рейнитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т. е. скорость света в этой фазе, зависит от поляризации.
Напомним, что линейно поляризованным светом, или как часто говорят, поляризованным светом, называют свет (электромагнитную волну), электрическое поле которой в процессе распространения остается лежащим в некоторой неизменной в пространстве плоскости. Эту плоскость принято называть плоскостью поляризации света. А указания ориентации в пространстве этой плоскости достаточно для описания линейной поляризации света. Поскольку в плоскости поляризации лежит и направление распространения волны, то для задания линейной поляризации достаточно одного параметра, а именно угла (р, определяющего ориентацию этой плоскости в пространстве (ее вращения вокруг направления распространения волны).
Явление двупреломления — это типично кристаллический эффект, состоящий в том, что скорость света в кристалле зависит от ориентации плоскости поляризации света. Существенно, что она достигает экстремального максимального и минимального значений для двух взаимно ортогональных ориентаций плоскости поляризации. Разумеется, ориентации поляризации, соответствующие экстремальным значениям скорости свете в кристалле, определяются анизотропией свойств кристалла и однозначно задаются ориентацией кристаллических осей относительно направления распространения света.
Поэтому сказанное поясняет, что существование двупреломления в жидкости, которая должна быть изотропной, т. е. что ее свойства должны быть независящими от направления, представлялось парадоксальным. Наиболее правдоподобным в то время могло казаться наличие в мутной фазе не расплавившихся малых частичек кристалла, кристаллитов, которые и являлись источником двупреломления. Однако более детальные исследования, к которым Рейнитцер привлек известного немецкого физика Лемана, показали, что мутная фаза не является двухфазной системой, т. е. не содержит в обычной жидкости кристаллических включений, а является новым фазовым состоянием вещества. Этому фазовому состоянию Леман дал название «жидкий кристалл» в связи с одновременно проявляемыми им свойствами жидкости и кристалла. Употребляется также и другой термин для названия жидких кристаллов. Это — «мезофаза», что буквально означает «промежуточная фаза».