Смекни!
smekni.com

Использование фотоупругого эффекта для измерения физических величин (стр. 2 из 4)


,
(2.1)

Здесь предполагается, что давление Р, воспринятое датчиком, механически преобразовано в эквивалентное линейное напряжение в области, пересекаемой световым лучом. Использование отношения разности к сумме позволяет снизить или устранить ошибки в системе, обусловленные создаваемыми источником излучения флуктуациями оптической мощности I0. Выходное напряжение обрабатывающей схемы определяется выражением

в пределах для малых Р. (2.2)

Можно видеть, что величина I0 в уравнение не входит, и в пределе при малых давлениях линейная взаимосвязь между выходным напряжением и приложенным давлением существует независимо от флуктуации оптической энергии, подаваемой на чувствительный элемент.

Рисунок 2.1-Волоконно-оптический датчик давления на основе эффекта фотоупругости

Одна из первых практических демонстраций датчика давления на основе фотоупругости состоялась в 1982 году. В этом датчике в качестве чувствительного элемента использовался блок натрий-кальциево-силикатного стекла. Датчик имел только один выходной канал. Принципиальная схема этого датчика приведена на рисунке 2.2. В этом конкретном датчике в качестве оптического источника применяется лазерный диод с волоконными выводами, кварцевое оптическое волокно с пластмассовой оболочкой и диаметром сердцевины 200 мкм, и стержневые градиентные линзы (GRIN).

Активный фотоупругий элемент представлял собой призму размером 0,6 х 0,6 х 1,2 см из пирекса (fa = 0,26 МПа/полосу/м). Давление на него передавалось Be-Cu-мембраной, как показано на рисунке 2.2. Были про ведены только лабораторные испытания этого прибора. Результаты тестирования приведены на рисунке 2.3. По экспериментальной кривой, представленной на рисунке 2.3, а, экспериментально

Рисунок 2.2-Многомодовый волоконно-оптический датчик давления на основе эффекта фотоупругости

Было определено минимальное обнаружимое давление. Эти данные количественно определяют относительное изменение оптической интенсивности, воспринимаемое, когда чувствительный элемент давления заполнен водой, эквивалентное изменению давления на мембрану величиной 0,9 кПа. Разделив ширину выхода в устойчивом состоянии (т.е. 0,2 ед.) на изменение сигнала для данной разности давлений, можно определить минимальное обнаружимое давление как Pmin = 95 Па. Это в 67 раз больше, чем минимальное обнаружимое давление (1,4 Па). Различие объяснялось сочетанием шума от лазерного источника и недостаточной передачи давления от мембраны к активному элементу. На рисунке 2.3, б приведена зависимость выходного сигнала прибора от приложенного гидростатического давления. Кривая демонстрирует диапазон линейности от 0 до 0,5 МПа и диапазон измерений, превышающий 8 МПа. Измеренный динамический диапазон составил 86 дБ, в то время, как вычисленный динамический диапазон превышал 120 дБ [дБ определяется здесь как 201og(Pmax/Pmin)]. В качестве верхнего предела гистерезиса этого датчика было установлено примерно ±1% от полной шкалы.

Рисунок 2.3-Регистрируемые сигналы от волоконно-оптического датчика давления на основе эффекта фотоупругости

Описание усовершенствованного варианта датчика давления на основе эффекта фотоупругости было опубликовано в 1983 году. В этом датчике (рисунок 2.4) вместо лазерного диода использовался светоизлучающий диод и два оптических канала были реализованы так, что зарегистрированную разность/сумму сигнала можно было использовать для компенсации амплитудного шума оптического источника. Принципиальная схема датчика приведена на рисунке 2.4. Подробная схема расположения оптических элементов показана на рисунке 2.5. В датчике излучение, прошедшее по входному оптическому волокну, коллимируется стержне вой градиентной линзой, отражается параллельно поверхности корпуса датчика и линейно поляризуется поляризующим светоделителем. Затем четвертьволновая пластина преобразует луч, придавая ему круговую поляризацию. После этого луч света проходит через активный чувствительный элемент (стеклянную призму), который подвергается напряжению с помощью латунного поршня, используемого для передачи напряжения от Be-Cu-мембраны. Затем полуволновая пластинка используется для поворота осей поляризации оптического луча на π/4, чтобы привести их в соответствие с осями выходного поляризующего светоделителя, встроенного в корпус датчика.

Рисунок 2.4-Датчик давления на основе эффекта фотоупругости с двойным выходом

Две поляризованные компоненты (соответствующие свету, поляризованному под углами ±π/4 к оси напряжения) вводятся после этого в от дельные оптические волокна с помощью стержневых градиентных линз для передачи в область расположения фотодетекторов. Анализ этой системы оптических элементов (если пренебречь потерями на отражение, коллимацию и выравнивание) показывает, что оптические сигналы, пере даваемые по двум выходным волокнам, описываются уравнением (2.1). Было установлено, что при отсутствии приложенного давления мощность сигналов, передаваемых по двум выходным волокнам, равна 5,3 и 8,9 мВт. Эти величины отличались от базовых значений, равных 4,8 и 4,9 мВт, из-за остаточного напряжения, приложенного к чувствительному элементу, когда затягивалось удерживающее кольцо на Be-Cu-мембране, что бы обеспечить отсутствие утечки масла в корпус датчика. Для зарегистрированных оптических мощностей, измерения анализатором спектра сигналов, зарегистрированных при помощи регистрирующего фотодиода в фоторезисторном режиме с нагрузкой 200 кОм, показали, что оптический дробовой шум является преобладающим источником шума. Измеренные уровни шума составляли —135 и —138 дБ/

;; предсказанные значения дробового шума составляли —134 и —137 дБ/
соответственно. Измеренные значения уровней шума в сочетании с наблюдаемым изменением интенсивности, вызванным приложенным давлением, определили динамический диапазон каналов равным 123 и 118 дБ, при условии 1 Гц полосы пропускания, при минимальных обнаружимых давлениях, равных 4,8 и 8,3 Па.

Рисунок 2.6-Принципиальная схема датчика давления на основе эффекта фото упругости с двойным выходом

Выходы двух детекторов были объединены с простой электронной схе мой, чтобы обеспечить выход, пропорциональный разности/сумме двух сигналов. Типичная характеристика датчика, в котором используется та кой способ обработки, показана на рисунке 2.8. Однако было обнаружено, что схема обработки увеличивает уровень выходного шума на 30 дБ /

, таким образом существенно снижая разрешение и уменьшая динамический диапазон датчика. Это показывает, что схема обработки сигнала после фотодетектора требует тщательной разработки и выбора компонент.

Рисунок 2.7-Подробная схема расположения оптических элементов датчика давления на основе эффекта фотоупругости с двойным выходом

Рисунок 2.8-Выходное электрическое напряжение датчика давления на основе эффекта фотоупругости с двойным выходом

Также был продемонстрирован простой одноосевой волоконно-оптический акселерометр, основанный на эффекте фотоупругости. Масса в 16 г, прикрепленная к грани х фотоупругого элемента, позволяет преобразовывать силы, обусловленные ускорением, в напряжение материала. Было протестировано два различных типа чувствительного фотоупругого материала: пирекс и полиуретан. Размеры стеклянного элемента составляли 0,6 х 0,6 х 1,2 см и оптическая длина пути 0,6 см. Полиуретановый элемент имел размеры 1,0 х 0,6 х 1,5 см при оптической длине пути, также равной 0,6 см. Прибор оценивался двумя способами. Во-первых, определялся отклик чувствительного элемента на статическую нагрузку. Это обеспечило прямое измерение коэффициента оптической чувствительности материала на рабочей длине волны лазерного диода с волоконными выводами RCA С86007, равной 820 нм. Для элементов из стекла и полиуретана, соответственно, эти коэффициенты составили: fa (стекла) = 0,13 МПа/полоса/м и fa (полиуретана) = 104 Па/полоса/м. При втором измерении одновременно волоконно-оптический акселерометр и эталонный акселерометр Bruel & Kjaer, типа 4371, были жестко закреплены на вибрационном столе Cleveland, модель VP-7-2, и подвергнуты вертикальному ускорению с частотой 100 Гц. Измерения выходных сигналов, проведенные спектроанализатором Tektronix 7LS, позволили определить динамические отношения сигнал/шум. Экспериментально определенные минимально обнаружимые пиковые ускорения для стеклянного и полиуретанового элементов составили 1,5 х 10-3 и 8,5 х 10-5 см/с2 соответственно. Теоретические минимально обнаружимые ускорения составляли 6,5 х 10-4 и 1,7 х 10-5 см/с2 для тех же элементов, что указывает на то, что по крайней мере при частоте 100 Гц существует приемлемое соответствие между теорией и реальными характеристиками. Источником расхождений, вероятно, стал амплитудный шум от лазерного диода, являющегося источником излучения. Демонстрация волоконно-оптического акселерометра показала, что подобный прибор можно реализовать сравнительно недорого и напрямую. Однако его принципиальное преимущество проявляется в ситуациях когда присутствуют только линейные ускорения. В более сложных ситуациях, силы сдвига, действующие на фотоупругий элемент при ускорении прикрепленной массы, могут сделать значение зарегистрированного сигнала неопределенным.