Последние модели преобразователей многих производителей наряду с частотным реализуют также векторное управление асинхронным электродвигателем. Это способ управления асинхронным двигателем, превосходящий по точности регулирования обычное частотное управление. Его применяют там, где требуется поддерживать момент на валу двигателя при малых скоростях вращения или обеспечить стабильную скорость при скачках нагрузки.
«Параметр» — работа преобразователя частоты в режиме стабилизации внешнего параметра. Система стабилизации внешнего параметра строится на основе ПИД-регулятора, на входы которого подаются сигнал задания параметра (уставки) и сигнал с датчика регулируемого параметра. ПИД-регулятор формирует управляющий сигнал для преобразователя частоты, который за счет изменения скорости вращения электродвигателя поддерживает управляемую величину, равную заданной (рис. 1). В качестве внешнего параметра может использоваться расход жидкости, давление, температура и др. Информация с датчика поступает с внешнего аналогового входа. Значение уставки может задаваться с пульта управления, с внешнего аналогового входа или комбинацией сигналов дискретных входов.
Режим управления преобразователем частоты
Внешнее управление — режим управления преобразователем от внешнего управляющего устройства. Как правило, для этого используется интерфейс RS232 или RS485. В качестве внешнего устройства управления может использоваться персональный компьютер со специальным программным обеспечением, позволяющий не только управлять преобразователем, но и просматривать информацию о его текущем состоянии. Часто имеется возможность управления преобразователем с внешнего пульта управления, который может располагаться на достаточном удалении (ограничения, накладываемые интерфейсом передачи данных на максимальную длину линии связи обычно составляют несколько сотен метров).
В качестве цифрового датчика температуры воздуха в помещении подстанции можно использовать функционально законченный прибор для измерения температуры DS18S20 (диапазон измеряемых температур –55оС¸+125оС; точность измерения ±0,5ºС), содержащий в своем составе 9-разрядный АЦП и однопроводный интерфейс, позволяющий подключение к сети MicroLan напрямую.
Вентилятор — ротор, на котором определенным образом закреплены лопатки, которые при вращении ротора, сталкиваясь с воздухом, отбрасывают его. От положения и формы лопаток зависит направление, в котором отбрасывается воздух.
В большинстве случаев для измерения температуры в трансформаторном масле применяются термопары.
Поэтому я выбрал микросхему фирмы MAXIM MAX6675. Кроме усилителя и компенсатора она включает в себя 12-разрядный АЦП и трехпроводный последовательный порт для ввода информации в микроконтроллер. Разрешающая способность – 0,250С, передача данных может производиться с частотой 4,3 МГц.
SIMOCODE pro - это гибкая, модульная система управления двигателями, которая объединяет в себе все функции, которые необходимы для двигательного фидера. Дополнительно потребуются только устройства коммутации и защиты от коротких замыканий в главной цепи (контакторы, автоматические выключатели, предохранители). SIMOCODE pro заменяет большую часть элементов контура управления и при этом автоматически реализует все необходимые блокировки. Он предоставляет большой объем
рабочих, сервисных и диагностических данных и тем самым делает двигательный фидер более прозрачным. Он полностью интегрирует двигательный фидер через PROFIBUS DP в общую систему автоматизации.
SIMOCODE pro регистрирует и контролирует токи всех трех фаз. Благодаря обработке суммы токов трех фаз создается возможность контроля возникновением тока утечки или замыкания на землю.
Автономный режим
SIMOCODE pro C и pro V защищают и управляют двигательным фидером независимо от системы автоматизации. Даже при отказе автоматики (ПЛК) или при нарушении связи двигательный фидер остается полностью защищенным и управляемым. SIMOCODE pro может использоваться без шины PROFIBUS DP, которую при необходимости, естественно, нетрудно подключить.
Типовые конфигурации
Приводимая схема иллюстрирует типовые конфигурации компонентов SIMOCODE pro C и SIMOCODE pro V:
Расчетная часть
Оценка погрешности каналов измерения напряжения и тока.
По заданию погрешность измерения по этим каналам e=1%. Погрешность выбранных датчиков тока и напряжения (трансформаторов тока и напряжения по классу точности 0,5)
eД£0,5% При этом eД³eК³eАЦП.
Если выбран быстродействующий АЦП, то устройство выборки-хранения можно не использовать. Поэтому принимаем
eУВХ=0%. Зададимся eК=0,2% и eАЦП=0,4%.
При этом суммарная среднеквадратическая погрешность оценивается выражением
eS=(e2Д+e2К+e2АЦП)1/2=(0,52+0,22+0,42)1/2=0,67%.
В суммарной погрешности не учитывается погрешность преобразования аналоговым каналом: составными частями универсального измерительного преобразователя. Если выбрать погрешность УИП
eУИП£(e-eS)=1-0,67=0,33%,
то измерительный канал будет соответствовать требованию "Задания" по точности измерения.
Необходимая разрядность АЦП определится выражением
m³int[log2(1/ 0,004)]
или m³8.
При этом погрешности
eАЦП£0,39%, eS=0,665%.
Оценка погрешности каналов измерения температуры.
Цифровой датчик для измерения температуры воздуха DS18S20 (со встроенным АЦП и однопроводным интерфейсом), время преобразования которого составляет 750 мс, обеспечивает точность измерения ±0,5ºС при представлении сигнала в цифровом коде. Т.е. уже на выходе встроенного АЦП. По заданию требуется точность измерения температуры 1ºС.
Применяемая термопара для измерения температуры масла обеспечивает точность измерения 1ºС во всем диапазоне температур. Для повышения помехоустойчивости и компенсации температуры холодного спая применен специальный интерфейс для термопар MAX6675, обеспечивающий разрешающую способность 0,250С при совместном использовании с применяемой Т-термопарой. Выходной сигнал – последовательный цифровой код, передача данных может производиться с частотой 4,3 МГц. По заданию требуется точность измерения температуры 1ºС. Т.о. видно, что на выходе 12-разрядного АЦП микросхемы точность в 4 раза выше.
Оценка погрешности измерения частоты
Государственным стандартом установлены нормы на стабильность частоты напряжения в промышленной сети по каждой фазе 50±1 Гц. Для того чтобы корректно получать оценки частоты измерительным прибором, необходимо обеспечить погрешность ниже, чем порог нестабильности частоты. Максимальная относительная нестабильность частоты составляет
1/50=0,002=0,2%.
Один из способов измерения частоты – это применения метода дискретного счета. При косвенном методе измерения частоты погрешность измерения определяется выражением
ef=1/m,
где m – число счетных импульсов, попавших в интервал наблюдения. В этом случае счетные импульсы формируются в измерительном устройстве, а измеряемый временной интервал (интервал наблюдения) равен периоду синусоидального измеряемого сигнала. Частота обратно пропорциональна периоду
fсети=1/Tсети.
В микропроцессорной системе метод дискретного счета реализуем двумя способами. Первый заключается в реализации классического алгоритма дискретной цифровой и аналоговой техники. При этом необходимо использовать набор функциональных блоков (например, блок определения одинакового знака производной сигнала, блок формирования временных ворот, схемы совпадения), преобразующих исходный (измеряемый сигнал) в последовательность временных интервалов, а затем, используя вход таймера микроконтроллера, можно с достаточно высокой точностью вычислить значение частоты сигнала. Таким образом, данный метод предполагает наличие дополнительных узлов в схеме АСК ТП.
Другой метод измерения частоты (периода) – чисто программный способ. Если число выборок сигнала напряжения достаточно велико, то не составляет труда с требуемой точностью реализовать тот же метод дискретного счета программным способом. Погрешность в данном случае будет определяться частотой дискретизации процесса, которая является аналогом частоты следования счетных импульсов в методе дискретного счета. При использовании данного метода измерения частоты появляется возможность получения оценки дополнительных характеристик процесса – коэффициент нелинейный искажений, контроль сдвига фаз по каналам, текущее определение мгновенных значений напряжения.
Оценим соотношение возможной величины погрешности измерения частоты и частоты дискретизации. Например, при m=10 погрешность составит ef=0,1=10%, при m=100 - ef=1%, при m=1000 - ef=0,1%.
Реализация программного метода измерения частоты прямо зависит от технических характеристик измерительной системы, временных соотношений работы всех составляющих системы. Точность вычисления может быть существенно повышена за счет применения методов математической обработки полученных данных (например, метода интерполяции).
Список литературы
1. Справочник инженера по АСУТП. Проектирование и разработка. Ю. Н. Федоров. Инфра-Инженерия, 2008 г.
2. Современные датчики. Фрайден Дж. Техносфера, 2006 г.
3. Инжиниринг электроприводов и систем автоматизации. Новиков В.А., Чернигов Л.М. Академия, 2006 г.
4. Электронные элементы устройств автоматического управления. Схемы, расчет, справочные данные. Академкнига, 2006 г.
5. SIMOCODE pro. РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ, ВВОДУ В ЭКСПЛУАТАЦИЮ, РЕМОНТУ И ОБСЛУЖИВАНИЮ. Издание 10/2005.