Смекни!
smekni.com

Конструктивное исполнение электродов в первичных химических источниках тока (стр. 3 из 9)


Через дно корпуса выходит спиральный токоотвод 7 отрицательного электрода, закрепленный герметизирующим слоем эпоксидной смолы. Шесть элементов собираются столбиком в батарею таким образом, чтобы токоотвод отрицательного электрода одного элемента прижимался к токоотводу положительного электрода другого элемента. Батарея имеет пластмассовый или металлический корпус с фигурными токовыводами на крышке, к которым подведены токоотводы от крайних элементов. После изготовления батарея помещается в полиэтиленовый изолирующий чехол и хранится в чехле до начала разряда.

1.7. Химические источники тока с алюминиевыми и магниевыми анодами

С алюминиевыми анодами и солевыми электролитами. Обычно выпускаются элементы призматической формы. Простейшая схема элемента приведена на рис.2.8.1. Он состоит из алюминиевого или магниевого анода, газодиффузионного воздушного электрода и электролитной камеры. При последовательном или параллельном соединении элементов получают батарею необходимой емкости и напряжения. Батарея имеет корпус с крышкой, к которой прикрепляются токоотводы электродов и в которой имеется клапан для отвода газов. На рис.2.8.2 приведена батарея воздушно-алюминиевых элементов, разработанная в МЭИ (ТУ). Материалом анода служил алюминий, модифицированный небольшими добавками (десятые и сотые массовые доли процента) галлия, олова и свинца. В качестве воздушных применяются двухслойные электроды толщиной 1-1,2 мм. Диффузионный слой состоит из гидрофобизатора (на основе суспензии фторопласта), сажи и металлической сетки. Активный слой содержит активированный уголь и фторопласт. Электролитом служил раствор NaCl (12-15% (по массе)), имеющий удельную электрическую проводимость при 18. °С 140-164 См/м.

В МЭИ (ТУ) также разработан воздушно-алюминиевый ХИТ погружного типа. Закрепленные на крышке электроды погружаются в сосуд с раствором NaCl. Для предотвращения токов утечки сосуд разделен на секции, имеющие дно и стенки и открытые вверху. Такая конструкция позволяет регулировать емкость ХИТ путем изменения размеров электродов и объема раствора электролита (объема секции). Такие ХИТ могут монтироваться у потребителя на любые емкость и напряжение из готовых воздушных и металлических электродов. Была разработана и успешно испытана погружая, батарея воздушно-алюминиевых элементов емкостью (без смены анодов) 300. А ч и напряжением 12. В, которая имела удельную энергию 300 Вт ч/кг.

Воздушно-алюминиевый ХИТ с щелочным электролитом. В качестве анодов используется алюминий высокой чистоты, легированный индием и другими металлами. Применяются пластины, порошки или стружка. Порошки или стружка загружаются между сетками в специальные рамки. В качестве катода служит газодиффузионный двух - или многослойный электрод, состоящий из диффузионного гидрофобного слоя, токопроводящей сетки и активного слоя, содержащего катализатор.


Электролитом является раствор КОН (6-8 моль/л), в который некоторые фирмы добавляют ингибитор коррозии, например станнит натрия. В большинстве ХИТ используется принцип механической замены анодов, в некоторых ХИТ периодически заменяется раствор электролита. Конструкции этих ХИТ относительно мало отличаются от рассмотренных ранее конструкций ХИТ с солевым электролитом. Сложнее устроены ХИТ, имеющие контуры циркуляции электролита. Воздушно-алюминиевый ХИТ большой мощности отличается от обычных ХИТ и практически является электрохимической энергоустановкой (рис.2.8.6). Раствор электролита с помощью насоса 3 поступает из батареи элементов 1 в теплообменник 4, где охлаждается, а затем в фильтр 5 резервуара раствора 7. Отфильтрованный раствор затем через термостат 8 и сепаратор 9 поступает в батарею элементов. Твердый осадок 6 из фильтра поступает на дно резервуара 7 и оттуда удаляется. В сепараторе 9 из раствора удаляются газы, прежде всего водород. Кроме приведенных на рис.2.8.6 частей, энергоустановка имеет систему автоматики, а также может включать инвертор, пробгазующий постоянный ток в переменный, трансформатор и систему использования выделяемой в элементах теплоты.

Марганцево-магниевыеХИТ. Производятся марганцево-магниевые ХИТ цилиндрической конфигурации в двух конструктивных формах: обычной и с внутренним анодом. Обычная форма аналогична форме цилиндрических марганцево-цинковых ХИТ с солевым электролитом. Элемент имеет внешний магниевый стакан, являющийся анодом, и внутренний прессованный или полученный экструзией катод с графитовым центральным токоотводом. Элемент снабжен клапаном для отвода газа при повышении давления. Элемент с внутренним анодом (рис.2.8.7) имеет два катода 1 с внешней и внутренней сторон магниевого цилиндрического анода 2. Анод отделяется от катода пористым бумажным сепаратором с раствором электролита. Катодный токоотвод 3 находится как в центре цилиндра, так и образует внешний цилиндр элемента. Элемент помещается в стальной луженый корпус. Магниевый анод содержит небольшие добавки алюминия и цинка. Катод состоит из,% (по массе): ацетиленовой сажи - 10, хромата бария - 3, гидроксила магния (буферная добавка) - 1, диоксида марганца - остальное. На 10 мае. ч. сухого вещества вводят 4 мае. ч. раствора электролита. Электролит содержит


1,2-2 моль/л Mg (C104) 2 и 0,2 г/л хромата лития.

При создании батарей элементов учитывается необходимость отвода теплоты при 20 °С и выше и изоляции при низких температурах окружающей среды. Принимается во внимание также необходимость удаления водорода.

2. Конструктивное исполнение электродов в резервных химических источниках тока

2.1. Водоактивируемые источники тока


Разработаны и используются батареи биполярной и монополярной конструкций. Монополярные элементы соединяются проволочными или фольговыми токоотводами. Биполярные электроды соединяются слоем графита и связующего, нанесенного на магниевый анод или на сшивку из медной проволоки (в ХИТ с хлоридом меди). В батареях повышенного напряжения биполярной конструкции возникают токи утечки. Однако из-за относительно невысокой электрической проводимости электролита (для морской воды 2,9 См/м при О °С и 5,85 См/м при 30 °С) токи утечки в водоактивируемых ХИТ обычно невелики. В батареях, в которых используются электролиты с более высокой проводимостью, распределительные каналы между элементами имеют высокое электрическое сопротивление, существуют также другие способы снижения токов утечки.

Применяются батареи погружного, наливного и проточного типов. Корпус батареи погружного типа имеет отверстия и щели или не имеет дна. При погружении морская вода поступает снизу и (или) сбоку и активирует ХИТ. Время работы может варьировать от нескольких минут до нескольких дней. Наливные ХИТ имеют сепараторы, пропитанные раствором хлорида натрия и затем высушенные. На рис.3.2.1. представлена схема наливной батареи системы Mg-AgCl. Для активации ХИТ заливаются пресной или морской водой. Активация продолжается от 3 до 30 мин в зависимости от температуры и солености воды. Время разряда их составляет от получаса до суток. В проточных батареях морская вода принудительно двигается между электродами. Специальный насос обеспечивает рециркуляцию воды. Благодаря циркуляции электролита, повышения температуры из-за выделения теплоты и применения непассивирующихся анодов достигаются высокие плотности тока (до 5 А/м2) и удельная мощность (до 1,2 кВт/кг). Время разряда не превышает 15 мин.

2.2. Ампульные источники тока

Существует целый ряд вариантов конструкций ампульных батарей, которые с момента их создания совершенствовались, но без принципиальных изменений. Основными общими требованиями, предъявляемыми к конструкции, являются: длительный срок сохраняемости в сухом заряженном состоянии, быстрота и безопасность процессов активации, высокая надежность в эксплуатации при воздействии ударных, вибрационных и линейных нагрузок, а в отдельных случаях обеспечение работоспособности источников тока при отрицательной температуре.

Решение этих проблем достигается разными способами, причем особенности конструкции ампульных ХИТ зависят от предъявляемых требований. Конструкции батарей могут быть условно разделены на ряд основных узлов, которые являются принципиально общими для всех батарей с теми или иными конструктивными особенностями. Такими узлами можно считать следующие:

· собственно батарея, состоящая из последовательно соединенных отдельных элементов или секций элементов. В большинстве случаев сосуд каждого элемента имеет два или несколько отверстий для ввода электролита, выхода воздуха и газа. В некоторых конструкциях в этих отверстиях устанавливаются клапаны того или иного устройства;

· резервуары для хранения электролита до момента активации батареи. Резервуары обычно выполняются в виде баллонов. Они могут конструктивно не представлять собой единого целого с батареей и после приведения в действие могут отделяться, что повышает ее удельные характеристики. В некоторых вариантах конструкций, особенно батарей малых габаритов, электролит хранится в трубках малого диаметра и выдавливается непосредственно газом;