Пошуки більш коректного методу вимірювання підвищення температури в зоні «шийки» привели до застосування для цих цілей фосфорів або термофарб як індикаторів розподілу температури за зразком у зоні «шийки». Фарбування фосфору й колір термофарби, нанесених на поверхню зразка, залежать від температури, що дозволяє по спектру визначити розподіл температур. Однак кількісні розрахунки й у цьому випадку виявляються важкими головним чином через мікророзміри зони «шийки», у якій відбувається властиво ориєнтаційна витяжка, оскільки розмір зерен фосфору або термофарби приблизно на порядок перевищує розмір «мікрошийок», внаслідок чого цей метод не може давати дійсну величину температурних змін у зоні «шийки».
Обоє описаних способів вимірювання температури при деформації засновані на безпосередньому контакті датчиків температури зі зразком. Нові більші можливості в цій області відкриваються із застосуванням безконтактного методу вимірювання температури, заснованого на реєстрації теплового (інфрачервоного) випромінювання. Цей метод характеризується досить високою інтегральною чутливістю й надзвичайно малою інерційністю, що дозволяє використовувати його не тільки для оцінки інтегральних температурних змін при деформації, але й для реєстрації кінетики температурних змін при швидких процесах деформації.
Деформаційна калориметрія полімерів одержала розвиток в останні 15 років. Робота розробленого Мюллером милликалориметра заснована на принципі газового термометра. В одному з двох металевих циліндрів, з'єднаних між собою диференціальним капілярним манометром, розташований зразок полімеру, а в іншому – порівняльний нагрівач. Циліндри герметичні й заповнені повітрям або іншим газом (наприклад, воднем). При механічних впливах на зразок, що задаються автоматичною системою деформації, змінюється температура зразка й навколишнього його газу. Останнє спричиняє зміну тиску газу, що реєструється диференціальним манометром. Спеціальна система, що стежить, прагне вирівняти тиски в циліндрах шляхом подачі струму в нагрівач порівняльного циліндра. По величині цього струму розраховується тепловий ефект. Для реєстрації ендотермічних ефектів калориметр попередньо нагрівають із постійною швидкістю. При поглинанні тепла зразком вихідний стан змінюється, і тепловий ефект, необхідний для збереження рівномірного нагрівання, реєструється. Чутливість цього милли – калориметра становить приблизно 4–10
8 кДж/с при калібруваннях постійної теплової потужністі, а мінімальний тепловий імпульс, який вдається зафіксувати, рівний 2•10 кДж. Точність визначення теплових ефектів, рівних ( ) • 10 5 кДж, становить ±5%. Для менших теплових ефектів вона досягає ±10%.Найважливішою проблемою стійкої роботи газового калориметра є термостатування циліндрів. Для досягнення зазначеної точності вимірів необхідно термостатування з точністю 10
4°С. У зв'язку із цим область роботи калориметра не перевищує ±20 °С стосовно кімнатної температури.Чутливість і якість реєстрації суттєво залежать від швидкості газу і його природи. Збільшення швидкості газового потоку й наявність турбулентності збільшують час швидкодії приладу, однак одночасно підвищується рівень шумів, що знижує чутливість. Це вимагає оптимізації швидкості газу. При витраті газу 4500 см3/хв рівень шумів при кімнатній температурі становить 0,6 мВт, що дозволяє реєструвати теплові потоки потужністю близько 20 мВт при різниці температур газу на вході й виході 0.35 °С. Константа часу приладу залежить від розмірів зразка (головним чином товщини) і параметрів газового потоку й коливається від 10 до 55
. Відтворюваність інтегральних значень теплових ефектів ±6%.Описані деформаційні газові калориметри досить складні в роботі й мають недостатньо високу чутливість. Робота деформаційного калориметра більш досконалої конструкції заснована на принципі Тиана – Кальве. Калориметр складається із двох основних блоків: мікрокалориметра й блоку розтягання.
Датчиками температурних змін є термобатареї, що містять по 810 диференціальних термоспаїв мідь – константан. Ці термобатареї змонтовані в калориметричних гніздах діаметром 10 мм і висотою 125 мм. Реєстрація температурних змін здійснюється електронним потенціометром після попереднього посилення сигналу на фотокомпенсаційному підсилювачі Ф116/1. Реєстрація розтяжних зусиль проводиться тензометром з тензометричним підсилювачем, сигнал з якого автоматично реєструється електронним потенціометром. Мікрокалориметр поміщений у спеціальний термостат; використані матеріали дозволяють працювати до температур 80–90 °С. Електричними калібруваннями було встановлено, що стійка чутливість при температурі 20 °С становить близько 4 • 10
7 Вт. Точність визначення теплових ефектів рівна ±( )%. Константа часу порожнього мікрокалориметричного гнізда становить приблизно 30–35 с. При введенні полімерних зразків вона зростає. Її значення для кожного зразка може бути визначене калібруванням.Багато вимірів при вивченні теплової поведінки полімерів при деформації можуть бути виконані в балістичному режимі (наприклад, розтягання пружного матеріалу). Вивчення балістичних властивостей мікрокалориметра показало, що якщо час теплового процесу
( – ефективна константа часу), тоді = const з точністю приблизно до 1% і не залежить від часу ( Т – максимум піка балістичної кривої, Q – кількість тепла).Таким чином, теплові ефекти процесів тривалістю до 10–15 с (
зазвичай становить близько 45–60 с) можуть бути визначені по величині максимуму піка після попереднього визначення відносини T/Q. Калориметр дозволяє реєструвати теплові ефекти процесів тривалістю менш 1 с. При цьому мінімальний тепловий імпульс, який вдалося зафіксувати, становив кДж. Вивчення балістичних характеристик мікрокалориметра показало також, що теплота, визначена по площі під балістичною кривою з використанням константи по відхиленню, точно відповідає тепловому ефекту, отриманому на підставі аналізу висоти піка.У зв'язку з використанням балістичних режимів вимірювань важливо оцінити характеристичний час досягнення рівномірного розподілу температури по товщині зразка. Цей час може бути приблизно оцінений по відношенню
, де – температуропровідність (для твердих полімерів вона рівна приблизно 10 м2/с) і – товщина зразка. Для = 0,01 см цей час становить близько 0,1с, а для =0,03 см він рівний приблизно 1 с.Використання балістичного методу дозволяє аналізувати в першім наближенні випадки, коли протікають два послідовні теплові процеси, один з яких балістичний (наприклад, швидке розтягання пружного матеріалу до постійних деформацій і наступний релаксаційний процес). У цьому випадку інтегральний тепловий ефект може бути визначений по площі під кривою теплового процесу, а тепловий ефект пружного розтягання – по максимуму піка. Експерименти показують, що запізнення максимуму піка після відключень балістичної теплової потужності становить приблизно 5 с. Тому впливом теплоти релаксації напруги на тепловий ефект пружного розтягання в першім наближенні можна знехтувати.
Описаний принцип деформаційного калориметра був використаний в установках для дослідження теплових ефектів при деформації масивних полімерних зразків і волокон. В останньому випадку замість термобатареї термопар використані термометри опору, рівномірно навиті на зовнішніх поверхнях робочого й порівняльного циліндрів.
Слід визнати, що більш перспективними для розвитку деформаційної калориметрії полімерів є не газові калориметри, а калориметри, робота яких заснована на методі Тиана – Кальве.
На відміну від газових калориметрів теорія калориметрів типу Тиана – Кальве добре розроблена і продовжує розвиватися, вже зараз існують надійні методи відновлення дійсних термокінетичних кривих швидких процесів на підставі записаних кривих.