Смекни!
smekni.com

Цепи постоянного тока (стр. 3 из 5)

Рис 1.4

Закон Ома и законы Кирхгофа для электрических цепей постоянного тока

Закон Ома устанавливает связь между электрическим током I, протекающим в цепи, электрическим напряжением U.

При анализе работы электрических цепей применяются три формулировки этого закона.

Закон Ома для участка цепи :

Для пассивного участка цепи по закону Ома

,
(1.1.13)

Закон Ома для полной цепи:

Если пренебречь сопротивлением проводов в схеме замещения простой неразветвлённой цепи рис.1.3 (Ra=0), то ток в цепи:

(1.1.14)

Закон Ома в обобщённой форме:

Закон Ома может быть записан и для участка цепи (например её любой ветви)содержащей источник ЭДС, с учётом известной разности потенциалов на концах этого участка рис.1.5.

Рис. 1.5

Для этого величина тока определяется выражением:

, (1.1.15 )

В общем случае произвольного числа источников ЭДС и резисторов это выражение имеет вид:

, (1.1.16)

Где ∑E – алгебраическая сумма ЭДС источников;

∑R – суммарное электрическое сопротивление цепи;

Первый Закон Кирхгофа

Первый и второй законы сформулированы Кирхгофом в 1845 году и являются основными законами определяющими решения электрической цепи. Первый закон Кирхгофа применяется к узлам электрической цепи. Он гласит: алгебраическая сумма токов в узле электрической цепи равно нулю:

(1.1.17)

Для узла и электрической цепи рис. 1.6 этот закон даёт выражение:

,

Рис.1.6

Первый закон описывает тот факт, что заряды одного знака не могут накапливаться в узле.

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи. Он формулируется следующим образом: алгебраическая сумма падения напряжения на всех сопротивлениях замкнутого контура равна алгебраической сумме ЭДС, входящих (включённых) в этот контур.

, (1.1.18)

Где n-число резисторов в контуре,

m- число источников ЭДС в контуре.

При записи этого выражения (1.18) задаются произвольно направления обхода и все слагаемые Vk, Ek cовпадающие с направлением обхода берутся со знаком плюс, а не совпадающие – со знаком минус.

Для контура рис 1.7 это выражение будет иметь вид:

Рис. 1.7

Второй закон Кирхгофа описывает тот факт, что при обходе контура и возвращении в конечную точку, потенциал этой точки не мажет измениться, так - как иначе не соблюдался бы закон сохранения энергии.

11 Эквивалентные преобразования пассивных участков электрической цепи

В зависимости от назначении электрической цепи, её элементы могут соединяться между собой последовательно, параллельно, последовательно – параллельно (по смешанной схеме), треугольником или звездой.

Последовательным называют соединение при котором ток в каждом элементе один и тот же. При таком соединении “n” резисторов (рис. 1.8а) могут быть заменены одним резистором (рис. 1.8б) с эквивалентным сопротивлением Rэ, при котором ток I в обоих схемах будет одинаков (при равенстве напряжения U на входах схем).

а) б)

рис. 1.8

Для схемы рис. 1.8а)

,

а для схемы рис. 1.8б)

Таким образом (из равенства напряжений на входах) получаем, что:

(1.1.19)

Эквивалентное сопротивление последовательного соединения резисторов равно сумме сопротивлений этих резисторов.

Параллельным называют соединение при котором все участки цепи присоединяются к одной паре узлов, т.е. находятся под воздействием одного и того же напряжения. При таком соединении рис. 1.9а) “n” параллельных резисторов можно заменить одним эквивалентным рис. 1.9б) сопротивление RЭ которое обеспечивает равенство токов I.

В неразветвлённых участках цепи:

Рис.1.9.

Для схемы рис.1.9(а) по первому закону Кирхгофа можно записать:

Так как для каждой ветви по закону Ома

,то :

, или

(1.1.20)

Поскольку

;
;
,…
,

То окончательно получаем:

(1.1.21)

Эквивалентная проводимость параллельно соединённых резистивных элементов равна сумме проводимостей этих элементов.

Из (1.20) следует, что при параллельном соединении двух резисторов их общее (эквивалентное) сопротивление равно:

(1.1.22)

Токи I1 и I2 двух параллельных ветвей выражаются через ток I в неразветвлённом участке цепи рис.1.10 формулами:

Рис.1.10

(1.1.23)

Сопротивления (1.1.23) называют формулами и разброса токов. Они могут быть получены также из системы уравнений:

(1.1.24)

Смешанное (последовательно-параллельное) соединение резистивных элементов приведено на рис.1.11

Рис.1.11

Из рис. 1.11 следует, что величина электрического сопротивления ,при котором ток в обоих схемах одинаков, равна :

(1.1.25)

Соединение треугольником и звездой .

В некоторых электрических цепях встречаются соединения элементов, которые нельзя отнести ни к одному из выше рассмотренных. Пример такой цепи приведён на рис.1.22(а):

а) б)

рис.1.12

Резисторы Rab, Rbc и Rcd на рис.1.12(а) соединены треугольником, а на рис. 1.22 (б) резисторы Ra, Rb, Rc - соединены звездой. Схема рис.1.12(б) проще для расчёта,чем схема рис.1.12(а),поэтому следует получить выражение Ra, Rb, Rc через Rab, Rbc, Rca и наоборот.

При эквивалентной замене обоих схем, токи Ia, Iab, Icd равны и, следовательно, равны напряжения Uab, Ubc, Ucd.

Запишем уравнение по второму закону Кирхгофа для треугольника abc рис.1.12(а):

(1.1.26)

Для узлов a и b в треугольнике по первому закону Кирхгофа:

,
(1.1.27)

Подставив (1.27) в (1.26),получим:

(1.1.28)

Для звезды рис.1.12 (б):

(1.1.29)

Из сравнения (1.28) с (1.29) следует, что:

;
(1.1.30)

По аналогии можно получить, что:

(1.1.31)

Формулы (1.30) И (1.31) позволяют преобразовать треугольник сопротивлений в эквивалентную звезду сопротивлений.

Формулы обратного перехода звезды сопротивлений в треугольник сопротивлений можно получить заменив в формулах (1.30) и (1.31) все сопротивления проводимостями. При этом получим:

;
;
(1.1.32)

Переходя к сопротивлениям, получим:

;
;
; (1.1.33)