Смекни!
smekni.com

Обертові, коливні і електронні спектри молекул (стр. 4 из 6)

Коливання, на які можна розкласти коливання зв’язаної системи, і при яких всі частки системи коливається з одною і тою ж частотою і фазою, тобто одночасно проходять через свої крайні положення, називають нормальними коливаннями.

Коливання, що мають більшу частоту ніж частота ізольованого маятника називають симетричним.

Коливання з меншою частотою називають антисиметричні. Кожна нормальне коливання молекули проходить з певною частотою nI, де i = 1, 2, …, r; r = 3N – 6 або 3N – 5 для лінійної молекули; N – число атомів у молекулі. Число коливних координат хλ, що визначає зміщення часток з положення рівноваги рівня r. Прикладом нормальних коливань можуть служити симетричні і антисиметричні коливання лінійної молекули СО2, у якій при рівноважній конфігурації атоми оксигену розміщуються на одинаковій віддалі ρ0 від карбону (мал.).

0 С 0

·¾¾·¾¾· – рівноважна конфігурація

ρ0 ρ0 молекули СО2.

0 С 0

¬·¾¾·¾¾·® – q1 і q2 – зміна довжин зв’язку

ρ1= ρ0+q1 ρ2= ρ0+q2 С–О; q1 = q2.

Коливання симетричне, проходить з частотою n1. Всі зв’язки одночасно скорочуються і видовжуються.

0 С 0

·®¾·¾¾·® – q1 ¹ q2, при цьому коливанні один

ρ1= ρ0–q1 ρ2= ρ0+q2. хімічний зв’язок скорочується, аінший видовжується.

Таке коливання називається антисиметричним.

В наближенні малих коливань енергія квантується незалежно для кожного нормального коливання і рівна

(ni – частота даного нормального коливання; vi – відповідне коливне квантове число). Повна коливна енергія рівна
= =
, а відповідна нульова енергія коливань Е0 =
. Найпростіший збуджений коливний стан молекули одержиться, коли vj = 1, a vi = 0; i ¹ j. Енергія такого стану рівна

E01 =

.

Сукупність частот niколивних переходів ni = 0 ® ni = 1 (i = 1, 2,…, r) є основною характеристикою нормальних коливань багатоатомної молекули.

Класифікація нормальних коливань по формі і симетрії

В молекулярній спектроскопії широке розповсюдження набула термінологія, заснована на класифікації нормальних коливань по формі і симетрії.

Валентні коливання – це таке нормальне коливання, при якому в основному змінюються довжини звязків, а кути між зв’язками практично не змінюються (позначаються такі коливання n). Якщо ж при коливанні змінюються валентні кути, а довжини зв’язків практично не змінюються, то коливання називається деформаційним (позначається d). Наприклад, для молекули води (Н2О):


Крім аналізу форми, як правило, приймають до уваги також властивості симетрії коливань багатоатомної молекули.

Якщо при даному нормальному коливанні, що супроводжується зміною довжин зв’язків і валентних кутів не проходить зміна симетрії рівноважної конфігурації молекули, то коливання називають симетричним і позначають буквою S.

Якщо коливання супроводжується зміною симетрії рівноважної конфігурації молекули, то його відносять до категорії антисиметричних (позначають as).

В тому випадку, якщо при симетричному коливанні змінюються лише довжини зв’язків, а валентні кути залишаються без змін, то такі коливання називаються повносиметричними.

Для вищерозглянутих коливань у молекулі Н2О: коливання n1(S) є повносиметричне; коливання n2(as) – антисиметричне; d(s) – симетричне.

Для СО2 число нормальних коливань рівне: 3N-5 = 3 · 3 – 5 = 4. Тоді n1(s) – симетричне; n2(as) – антисиметричне. Якщо молекулу СО2, в якій відбувається коливання d, повертаємо на 50º, то одержимо фактично два коливання, що відбуваються у двох перпендикулярних площинах (мал.). Ці коливання будуть мати одну і ту ж частоту, але різну форму. Це випадок вироджеиих коливань; в даному випадку це два рази вироджене коливання.

Мал. Коливання молекули СО2.

Як бачимо, коливання у молекулах бувають вироджені і невироджені.

Виродженими називають нормальні коливання різної форми, що відбуваються з одинаковою частотою, тобто енергія коливання у них одинакова.

Для молекул, симетрія яких описується групами нижчої симетрії, тобто це групи симетрії, що не мають осей вищого порядку, можливі тільки невироджені коливання – кожному коливанню відповідає своя частота. Число різних частот нормальних коливань рівне числу коливних ступенів волі.

Для молекул, рівноважна конфігурація яких описується групами симетрії середньої категорії (присутня одна вісь вищого порядку, поряд з невиродженими коливаннями є два рази вироджені коливання), тобто пара коливання різної форми, що здійснюються з одинаковою частотою. В цьому випадку число різних частот нормальних коливань буде менше числа коливних ступенів волі.

Для молекул, рівноважна конфігурація яких відноситься до груп симетрії вищої категорії, які мають по декілька осей вищого порядку. Такі молекули мають поряд з невиродженими і двовиродженими містять і триразвироджені коливання, тобто три коливання різної форми, але з одинаковою частотою: СН4 – 35 – 6 = 9 колив. (прояв. 4). Число коливань з різною частотою можливих коливних координат; в цьому випадку буде набагато менше число ступенів волі.

Для характеристики властивостей симетрії коливань використовують спеціальні позначення у вигляді символів з різними індексами.

Невироджені коливання симетричні або антисиметричні відносно осі симетрії Cn, позначають буквами А або В: А – невироджені відносно осі Cn; В – антисиметричні невироджені відносно осі Cn.

Індекси gi при А і В позначають відповідно симетричне або антисиметричне коливання по відношенню до i (центра симетрії).

Підстрочні індекси 1 і 2 позначають симетричні і антисиметричні коливання по відношенню до операції відбиття у вертиальній площині симетрії σv, в якій лежить вісь.

Надстрочні індекси штрих (¢) або два штрихи (²) при прописних буквах позначають симетричні і антисиметричні коливання відносно відбиття в горизонтальній площині симетрії σn.

І, накінець, індексами q або u, розміщеними як і цифри 1 і 2 справа внизу біля символа, позначають коливання симетричні або антисиметричні відносно центра симетрії.

Для 2-х і 3-х вироджених коливань використовують відповідно символи Е і F. Наприклад, запис

означає:

А – гнвироджене симетричне коливання;

нижній індекс 1 – коливання симетричне відносно операції відбиття у вертикальній площині симетрії (σv);

верхній штрих (¢) – коливання симетричне відносно горизонтальної площини симетрії (σn);

q – коливання симетричне відносно центра інверсії (симетрії) (i).

Найбільш проста класифікація коливань по типу симетрії одержується для молекул, рівноважна конфігурація яких не має осей порядка n > 2 і відноситься до точкових груп нижчої симетрії. Всім елементам симетрії для цих груп відповідають операції симетрії, при повторенні яких система переходить сама в себе. В силу зміщення і відповідні їм координати симетрії відносно кожної операції можуть бути симетричними або антисиметричними, тобто не міняти чи міняти знак при даній операції симетрії. При повторенні будь-якої операції симетрії два рази знак завжди зберігається. В раніше розглянутому випадку для молекули Н2О симетричні зміщення g1 і g2 = g1 і координати gs = g1 = g2 не міняють знак ні при яких операціях симетрії точкової групи С2v (C1, C2, σ¢v, σ²v), а антисиметричні зміщення g1 і g2 = – g1 і координата gа = g1 = – g2 міняє знак при повороті С2 і при відбитті σ²v, зберігаючи його при відбитті σ¢v і при операції C1. Таким чином, координата gs є симетричною по відношенню до всіх операцій симетрії, а координата gа симетрична по відношенню до операції С1 і σ¢v і антисиметрична по відношенню до операцій С2 і σ²v, що можна записати у вигляді таблиці. В таблиці приведені множники, на які множиться координата симетрії при відповідній операції і які рівні або +1, або –1. Координати симетричні і антисиметричні відносно осі позначаються буквами А і В, а координати симетричні і антисиметричні відносно площини (в даному випадку відносно σ²v – індексами 1 і 2 (справа знизу) відповідно. Координати gs і α = αs мають в цих позначеннях симетрію А1, а координати gа – симетрію В2. Відмітимо, що властивості симетрії відносно площини σ¢v визначаються властивостями симетрії відносно С2 і σ²v внаслідок σ¢v = С2σ²v.

Таблиця

Позначення С1 С2 σ¢v = σхv σ²v = σуv
А1 1 1 1 1
А2 1 1 –1 –1
В1 1 –1 –1 1
В2 1 –1 1 –1