n 1 2 3 4 5 6 7
енергетичні рівні K L M N O P Q.
Максимальна кількість енергетичних рівнів, яку може мати атом в основному стані, відповідає номеру періода, в якому розміщений певний хімічний елемент. Головне квантове число визначає і розміри електронної хмари: зменшення зв’язку енергії електрона з ядром відповідає збільшенню об’єму хмари і навпаки.
Основні енергетичні рівні складаються з певного числа енергетичних підрівнів, які проявляються в тонкій структурі атомних спектрів. Для характеристики енергії електрона на підрівні, або форми електронних орбіталей, введено орбітальне квантове число l, яке називається також азімутальним квантовим числом. Воно відповідає значенню орбітального моменту кількості руху електрона і обчислюється за формулою:
М =
Орбітальне квантове число (l) може мати значення від 0 до n – 1. Кожному значенню l відповідає певний підрівень. Енергетичні підрівні позначаються цифрами і маленькими латинськими буквами:
l 0 1 2 3
енергетичні рівні s p d f.
Можлива кількість підрівнів для кожного енергетичного рівня дорівнює номеру цього рівня, тобто величині головного квантового числа. Так, якщо n = 1, то існує лише один підрівень з орбітальним квантовим числом l = 0. На другому енергетичному рівні (n = 2) можуть бути два підрівні, яким відповідають орюітальні квантові числа l = 0; 1.
Відповідно до буквенних позначень енергетичних підрівнів електрони, які перебувають на них називаються s-, p-, d-, f-електронами.
Відповідно до квантовомеханічних розрахунків s-орбіталі мають форму кулі (сферична симетрія); р-орбіталі – форму гантелі; d- і f-орбіталі більш складної форми. Під ”формою орбіталі” треба розуміти таку просторову геометричну модель, в межах якої перебування електрона найімовірніше.
Стан електрона в атомі, що відповідає певним значенням n і l, записують так: спочатку цифрою позначають головне квантове число, а потім буквою – орбітальне квантове число:
3s (n = 3; l = 0); 4p (n =4; l = 1)
У магнітному полі спектральні лінії атомів стають ширшими, або розщеплюються, тобто з’являються нові близько розташовані лінії (збільшується мультиплетність). Це пояснюється тим, що електрон в атомі на всіх, крім s-підрівня, поводить себе подібно до магніту і тому характеризується, крім орбітального, ще і магнітним моментом. Просторове розміщення електронних орбіталей відносно напрямленості магнітного поля характеризується третім квантовим числом me, яке називається магнітним. Магнітне поле орієнтує площину орбіталі в просторі під певними кутами, при яких проекція орбітального моменту Мх на напрямленість поля (наприклад, на вісь х) визначається за формулою
Мх =
mlМагнітне квантове число може мати цілочислові значення від +l до –l.
Для s-електронів можливе лише одне значення ml і для р-електронів (l = 1) ml = –1; 0; +1; для d-електронів (l = 2) ml = –2; –1; 0; +1; +2; для f-електронів (l = 3) ml = –3; –2; –1; 0; +1; +2; +3. Певному значенню l відповідає (2l + 1) можливих значень магнітного квантового числа. Орбіталі з одинаковою енергією називають виродженими. Тому р-стан вироджений три рази; d-стан – п’ять; f-стан – сім разів.
Слід зазначити, що кожну орбіталь зображають також як енергетичну (квантову) комірку у вигляді квадратика □. Для s-електронів є лише одна орбіталь, або одна енергетична комірка; для р-електронів – три □□□ , для d-електронів – п’ять □□□□□ , для f-електронів – сім □□□□□□□ .
Стан електронів в атомі, крім обертання навколо ядра, яке визначається квантовими числами n, l, me, залежить також від їхнього власного власного руху – спіну: навколо власної осі цей рух електрона характеризується спіновим квантовим числом s, яке може мати тільки два значення +
або – . Спін зображають протилежно напрямленими стрілками: ↓ | ; | ↑ | ; | ↑↓ |
Спіни електронів, напрямлені в один бік, називаються паралельними, а в протилежні – антипаралельними
Принцип Паулі. На основі аналізу атомних спектрів і врахування положення елемента в періодичній системі в 1925 р. В. Паулі сформулював принцип, який дає змогу визначити такі комбінації квантових чисел, які відповідають реальному розподілу електронів в атомі. Згідно принципу Паулі, в атомі не може бути двох електронів з одинаковими значеннями всіх чотирьох квантових чисел. Наприклад, якщо два електрони, які мають одинакові значення трьох квантових чисел n, l і me, відрізняються значенням четвертого квантового числа s. Суть принципу полягає в тому, що одну орбіталь, яка характеризується певними значеннями n, l і me, можуть займати не більше як два електрони з антипаралельними спінами. Число можливих енергетичних станів електронів на певному рівні визначається квадратом головного квантового числа – n2, а максимальне число електронів на ньому дорівнює 2n2.
Розподіл електронів на енергетичних рівнях і підрівнях записується так: великою арабською цифрою позначається номер енергетичного рівня, маленькими латинськими буквами – підрівні, а число електронів на підрівні – маленькою арабською цифрою справа зверху у вигляді індекса. Наприклад: 3s23p6d10 – розподіл електронів на третьому енергетичному рівні.
Послідовність заповнення електронами енергетичних рівнів в атомах. Послідовність заповнення атомних електронних орбіталей залежно від головного і орбітального квантових чисел дослідов В. М. Клечковський, який встановив, що енергія електрона зростає із збільшенням суми цих двох квантових чисел, тобто (n + l). Відповідно до цього він сформулював правило: при збільшенні заряду ядра атома послідовне заповнення орбіталей відбувається від орбіталей з меншим значенням суми головного і орбітального квантових чисел (n + l) до орбіталей з більшим значенням цієї суми.
При одинакових значеннях суми (n + l) заповнення електронами орбіталей відбувається послідовно у напрямі зростання значення головного квантового числа.
Заповнення електронами всіх енергетичних рівнів і підрівнів залежно від їх енергії відбувається в такій послідовності:
1s – 2s – 2p – 3s – 3p – 4s – 3d – 4p – 5s – 4d – 5p – 6s – 5d – 4f – 6p – 7s – 6d – 5f – 7p
Заповнення електронами еквівалентних орбіталей відбувається згідно правила Гунда: сумарне спінове число електронів певного підрівня має бути максимальним. Елементи, в атомах яких заповнюються s-орбіталі, називаються s-елементами; р-орбіталі – називаються р-елементами; d-орбіталі – d-елементами; f-орбіталі – f-елементами.
На основі теорії будови атомів було встановлено причину періодичної зміни властивостей елементів. Властивості елементів змінюються періодично завдяки тому, що періодично повторюється заповнення електронами зовнішніх енергетичних рівнів. Наприклад: лужні метали містять на зовнішньому рівні один електрон в атомі – us1, лужноземельні – us2.
Ядро атома. Атомне ядро складається з протонів (р) і нейтронів (n), які об’єднуються під загальною назвою нуклони. Природа елементарних часток р і n визначається трьома кількісними характеристиками: масою, зарядом і спіном.
Протон (р) – частка з масою 1,007276 в. о, зарядом +1 (заряд рівний за величиною заряду електрона, але протилежний за знаком) і спіном ±
.Нейтрон – частка з масою 1,008665 в. о, електричного заряду і спіном ±
.Властивості ядра визначаються його складом – числом протонів (Z) і нейтронів (W), що входять до складу ядра і визначають його масове число А: А = Z + W. Масове число і порядковий номер елемента (число протонів) називають числовими індексами (зліва символу хімічного елемента: верхній індекс – масове число; нижній індекс – число протонів). Наприклад:
Атоми з одинаковим числом протонів і різною кількістю нейтронів у ядрі називають ізотопами.
Атоми з одинаковим числом нуклонів (А) і різним числом протонів і нейтронів – ізобарами. Наприклад:
і – ізотопи; і – ізобариЯдра атомів природних елементів бувають стійкими і радіоактивними. Якщо число протонів приблизно дорівнює числу нейтронів, ядра атомів елементів стійкі. Якщо число нейтронів значно перевищує число протонів, то ядра стають нестійкими. Стійкість ядер характеризується параметрами Бора – значенням співвідношення
Якщо це співвідношення більше ніж 33, то ядро нестійке, радіоактивне. Елементи з порядковими номерами Z = = 84 – 92 розміщені в періодичній системі за вісмутом – радіоактивні.
Радіоактивними є ізотопи елементів з порядковими номерами 93–104, які добувають штучно внаслідок ядерних реакцій.
Радіоактивністю називається самовільне перетворення нестійкого ізотопу одного хімічного елементу в ізотоп іншого елементу, що супроводжується випромінюванням елементарних частот, або ядер. Число ядер Р радіоактивного ізотопу, що розпалися за одиницю часу прямопропорційне загальній кількості ядер Q цього ізотопу (закон радіоактивного розпаду): Р = λ · Q, де λ – коефіцієнт пропорціональності, або константа радіоактивного розпаду, яка для кожного радіоактивного ізотопу має своє певне значення.