Смекни!
smekni.com

Организация ремонта предохранителей (стр. 3 из 5)

Основными частями предохранителя являются плавкая вставка и основание для ее установки.

Плавкая вставка – часть предохранителя, в которой происходит отключение электрического тока, подлежащая замене после срабатывания предохранителя. Она представляет собой корпус, в котором расположен плавкий элемент, расплавляющийся при срабатывании предохранителя, и дугогасительное устройство, представляющее собой наполнитель, для гашения возникающей при перегорании плавкого элемента электрической дуги.

Держатель плавкой вставки – съемная часть предохранителя, предназначенная для удержания его плавкой вставки. Контакты плавкой вставки – токоведущая часть, обеспечивающая электрическую связь контактов плавкой вставки с подводящими проводниками. Держатель предохранителя – сочетание основания предохранителя с держателем плавкой вставки. Блок предохранителя – механическое устройство в конструкции плавкой вставки предохранителя, которое при срабатывании предохранителя освобождает энергию, необходимую для срабатывания других аппаратов (или указателей) или для воздействия на свободные контакты предохранителя.


2. Организация ремонта

2.1 Текущий ремонт

При текущем ремонте предохранителей напряжением до 1000 Вольт с контактных поверхностей губок и патронов удаляют грязь, оксидные пленки и частицы расплавленного металла. Окислившиеся контакты зачищают стеклянной бумагой, а обгоревшие и оплавленные – надфилем. Затем разбирают патрон, проверяют состояние внутренних токопро-водящих частей и плавких вставок. Дефекты устраняют, а плавкую вставку, долго находившуюся в эксплуатации, заменяют новой. Вставки в предохранителях соседних фаз независимо от их состояния также меняют. Они должны быть однотипными, заводского изготовления и строго соответствовать значениям номинального тока предохранителя и тока защищаемой линии. При осмотре патрона предохранителя обращают внимание на целость и степень износа его стенок, так как при частых перегрузках плавкой вставки стенки патрона выгорают под воздействием высокой температуры дуги. При выгорании стенок патрона более чем на 50% первоначальной толщины патрон заменяют новым [2, c. 12].

Фибра, из которой изготовляют патрон предохранителя, представляет собой электротехнический картон, пропитанный под давлением раствором хлористого цинка. При перегорании плавкой вставки под воздействием высокой температуры дуги фибра выделяет пары цинка и хлористый газ, которые способствуют быстрому гашению дуги. При ремонте патрона стенки очищают от обгоревшей фибры, промывают, насухо вытирают чистой тряпкой, покрывают двумя слоями бакелитового лака или одним слоем клея БФ-2, а затем просушивают. После очистки внутренних токопроводящих деталей полость патрона предохранителя наполняют сухим кварцевым песком, который предварительно обрабатывают 2%-м раствором соляной кислоты, промывают и просушивают при 150–180 °С.

Чтобы убедиться в наличии электрической цепи между плавкой вставкой и контактными частями, отремонтированный патрон проверяют контрольной лампой, а затем устанавливают (при отключенном напряжении) в губках предохранителя. При этом обращают внимание на наличие контакта между губками и патроном [17, c. 35].

Предохранители предназначены для защиты электрических цепей от токов короткого замыкания или недопустимых токов нагрузки и характеризуются номинальными токами плавкой вставки и предохранителя. Номинальным током плавкой вставки называют ток, при котором она должна работать в течение продолжительного времени, а номинальным током предохранителя – наибольший из номинальных токов плавких вставок, используемых в данном предохранителе. Для обеспечения быстрого плавления вставки предохранителя и повышения его защитного действия при малых перегрузках на ленточки вставки напаивают оловянные шарики диаметром 0,5–2 мм. Эти шарики позволяют использовать так называемый металлургический эффект. Сущность его заключается в том, что при нагревании вставки оловянный шарик с более низкой температурой плавления расплавляется раньше, чем вставка, и, проникая в нее, образует сплав металла, который по сравнению с исходным материалом обладает большим электрическим сопротивлением. При токах перегрузки вставка перегорает в месте напайки оловянного шарика. Предохранители характеризуются токоограничивающей способностью, так как плавкая вставка в них перегорает раньше, чем ток короткого замыкания успеет достигнуть устойчивого значения.

В ремонтных мастерских можно изготовить плавкую вставку из калиброванной проволоки, т.е. проволоки из легкоплавких металлов или сплавов, имеющей конкретный диаметр и рассчитанной на определенный ток (калибровку проволоки проводят на специальном стенде).

Расчет необходимого номинального значения тока плавкой вставки ведут с учетом эксплуатационных перегрузок и пуска защищаемой установки. Так, пусковой ток асинхронного двигателя (АД) с короткозамкнутым ротором может превышать номинальное значение тока в 7 раз. По мере разгона двигателя пусковой ток уменьшается до номинального. Длительность пуска зависит от характера нагрузки. Предохранитель не должен перегорать при воздействии на него пусковых токов. Параметры плавкой вставки в процессе эксплуатации должны быть стабильными, т.е. не должно происходить ее старения. Экспериментально установлено, что старение плавкой вставки не происходит при токах, равных 0,5 1пл, где /пл – ток плавления вставки. Из время-токовой характеристики предохранителя ПН-2 для времени 1 с его вставка плавится при токе, равном 5 /вст.НОм. Если пуск АД длится 1 с, то среднее значение пускового тока за этот период должно быть не более 0,5 /пл плавкой вставки за это же время. Таким образом, пусковой ток 1псвязан с током плавления 7ПЛ соотношением [22, c. 16]:

…"» />

откуда

т.е. номинальный ток вставки выбирают в зависимости от пускового тока нагрузки.

При тяжелых условиях пуска АД (привод центрифуги и др.) или повторно-кратковременном режиме, когда пуски происходят с большой частотой, плавкая вставка выбирается с еще большим запасом по току:

Если предохранитель стоит в линии, питающей несколько АД,


где Jp – расчетный номинальный ток линии, равный сумме номинальных токов всех двигателей; /Ном.дв ~ номинальный ток двигателя, имеющего наименьшую мощность.

Для АД с фазным ротором, если /п < 2/номдв,

2.2 Возможные неисправности, их причины, порядок устранения

Рассмотрим возможные неисправности, которые могут возникнуть при работе предохранителей.

1. Гашение дуги при срабатывании предохранителя различных конструктивных исполнений происходит в различных дугогасящих средах.

В качестве дугогасящей среды может использоваться: вакуум. Однако при этом в цепях постоянного и выпрямленного токов после расплавления плавкого элемента в вакууме горит устойчивая дуга, и предохранитель не способен отключать ток К3; изоляционная жидкость. При токах К3 вокруг плавкого элемента образуется область, заполненная паром изоляционной жидкости, которая теплоизолирует плавкий элемент или его узкий перешеек, вызывая тем самым ускорение процесса расплавления.

2. Пространство между керамическими пластинами и корпусом плавких вставок заполняется кварцевым песком. После возникновения дуги при расплавлении металлического перешейка на очень малой длине (0,5–1 мм) ионизированная плазма и расплавленный металл перешейка будут удаляться из дугового промежутка через щель в наполнителе. Наличие близко расположенных к дуге относительно холодных (при больших токах КЗ) изоляционных стенок радиаторов способствует деионизации дугового промежутка. Явление вжигания металла в материал изоляционных стенок радиаторов несколько снижает эффект дугогашения. Поверхность всех радиаторов на месте горения дуги остеклована, однако значительный температурный удар, возникающий при горении дуги, вызывает появление многочисленных микротрещин и даже растрескивание радиаторов.

3. Предохранители с плавкими элементами, достаточно прочно зажатыми между керамическими накладками и размещенными в кварцевом песке, надежно отключают большие токи КЗ, но при малых токовых перегрузках, вследствие значительного нагрева керамических накладок, возможно затяжное горение дуги, иногда приводящее к разрушению предохранителя; сыпучий наполнитель – кварцевый песок – наиболее широко применяемый материал. Гашение дуги в таких предохранителях основано на интенсивной деионизации дуги в узких щелях между песчинками наполнителя.

4. Защитные характеристики предохранителей существенно зависят от уплотнения наполнителя, т. к. даже в плавких вставках, до предела заполненных песком, но без дополнительного уплотняющего воздействия, при транспортировке и эксплуатации возникают воздушные полости значительных размеров, что при отключении предохранителем цепей в аварийном режиме приводит к значительному увеличению длительности горения дуги, т.е. ухудшению защитных характеристик или даже к авариям.

5. В случае прохождения через плавкую вставку предохранителя тока, превышающего ее номинальный ток, вставка перегорает и разрывает электрическую цепь, отключая защищаемый участок от остальной части электроустановки. В электроустановках напряжением до 1000 В широко применяются предохранители ПР и ПН [9, c. 39].