Смекни!
smekni.com

Основні поняття квантової механіки (стр. 2 из 2)

. (1.2.13)

Перший співмножник в (1.2.13) залежить лише від часу, а другий ― лише від координат (

).

Розв’язки рівняння Шредінгера, а також стани частинок, для яких потенціальна енергія, а також густина імовірностей не змінюються з часом, називаються стаціонарними. Стаціонарні стани не виключають залежності хвильової функції від часу, а лише обмежують її гармонічним законом

.

Підставляючи хвильову функцію (1.2.13) у рівняння Шредінгера (1.2.12) одержимо

.

Скоротимо цей вираз на експоненту:

, (1.2.14)

де

; Е ― повна енергія частинки;
― потенціальна енергія частинки, яка є функцією лише координат;
― хвильова функція; m ― маса частинки;
― стала Дірака (
).

Стаціонарне рівняння Шредінгера (1.2.14) є однорідним лінійним диференціальним рівнянням другого порядку відносно координат x, y, z. У випадку, коли

=0, це рівняння не має фізичного змісту. У рівнянні Шредінгера для стаціонарних станів є єдиний вільний параметр ― повна енергія частинки Е. При деяких значеннях повної енергії це рівняння може мати нульові розв’язки. Ті значення повної енергії, при яких рівняння (1.2.14) буде мати нульові розв’язки, називаються власними значеннями. Кожному такому власному значенню енергії відповідає свій розв’язок рівняння (1.2.14).

Стаціонарне рівняння Шредінгера дає не лише значення хвильової функції, але й значення цієї функції у стаціонарних станах.