Смекни!
smekni.com

Основные теоремы теории электрических цепей (стр. 2 из 2)

Рис. 1.8.

Алгебраическая сумма мгновенных мощностей, развиваемых источниками напряжения и тока:

.

Потребляемая мощность с учетом законов Ома:

В соответствии с балансом мощностей:

.

Следует отметить, что при определении

произведение ei, берется со знаком "+", если направления задающего напряжения eи тока i совпадают с друг другом, и со знаком "–" в противном случае. Аналогичное правило знаков для источников тока: если напряжение на зажимах источника совпадает с направлением задающего тока i0, берется знак "+", а если напряжение направлено навстречу задающему току — знак "–". Баланс мощности выражает не что иное, как закон сохранения энергии в электрической цепи.

Принцип дуальности

Сопоставление уравнений, составленных по первому и второму законам Кирхгофа, а также соотношений для последовательного и параллельного соединения элементов свидетельствуют о существовании таких цепей, у которых токи в одной цепи изменяются как напряжения в другой цепи. Уравнения таких цепей сходны по форме и отличаются лишь обозначениями. Эти цепи называют дуальными.

Дуальными являются, например, цепи, схемы которых изображены на рисунке 1.9, поскольку напряжение в одной схеме изменяется по такому же закону, как ток в другой схеме.


Рис. 1.9.

Действительно, для схемы рис. 1.9, а согласно первому закону Кирхгофа:

или
.

Учитывая соотношения между напряжением и током для элементов:

и
,

получим уравнение для напряжения цепи:

(1)

Для схемы рис. 1.9, б по второму закону Кирхгофа

или
. Учитывая соотношения

и
получим уравнение для тока в цепи:

(2)

Уравнения (1) и (2) сходны по форме. Эти обыкновенные линейные неоднородные дифференциальные уравнения 1-го порядка. Второе уравнение получается из первого, если заменить u на i, С на L, G наR, i0 на e.

Приведенные пары величин также называются дуальными величинами.

Таким образом, дуальными являются напряжение и ток, емкость и индуктивность, проводимость и сопротивление, источник тока и источник напряжения. Параллельному соединению элементов исходной схемы соответствует последовательное соединение дуальных элементов в дуальной цепи.

Дуальные величины приведены в таблице 1.1.

Таблица 1.1.

1-я группа величин 2-я группа величин
ток напряжение
напряжение ток
проводимость сопротивление
емкость индуктивность
индуктивность емкость
задающий ток Э. Д. С.

Следовательно, чтобы получить цепь, дуальную заданной, необходимо в простейших случаях параллельное соединение элементов заменить последовательным, элемент проводимости – сопротивлением, емкость – индуктивностью, индуктивность – емкостью, источник тока – источником напряжения.

Для цепи, схема которой изображена на рис. 1.10, а, дуальной будет цепь – рис. 1.10, б.


Рис. 1.10.

Уравнение для напряжения в первой цепи и уравнение для тока во второй цепи будут отличаться лишь обозначениями. Если получено решение одного из уравнений, то в новых дуальных обозначениях это же будет решением второго уравнения.

Принцип дуальности (двойственности) гласит: если для данной электрической цепи справедливы некоторые законы, уравнения или соотношения, то они будут справедливы и для дуальных величин в дуальной цепи.

В этом и заключается содержание принципа дуальности. Использование принципа дуальности позволяет сократить выкладки и формулировки. Например, результаты анализа цепи (рис. 1.10, а), именуемой параллельным колебательным контуром, можно использовать для дуальной цепи – последовательного колебательного контура (рис. 1.10, б) путем замены всех величин дуальными. Тогда напряжение на элементе индуктивности (емкости) последовательного контура будет изменяться по такому же закону, как ток в элементе емкости (индуктивности) параллельного контура, напряжение на сопротивлении R – как ток в элементе G.


Заключение

Использование принципа дуальности на практике позволяет в два раза сократить работу по исследованию схем или, наоборот, расширить область применения найденных решений в два раза применив их также и для дуальных цепей. В данной лекции может быть использована дуальная формулировка теоремы замещения (дуальная формулировка дана в лекции).

В теории электрических цепей показывается, что для всех цепей, схемы которых можно изобразить на листе бумаги, не допуская пересечения соединительных проводников (планарные цепи), можно найти соответствующие дуальные схемы. В этих схемах будут иметь место указанные выше соответствия между элементами цепей и способами их соединения, а также и между величинами, которые являются дуальными.

Методика нахождения дуальных схем в общем случае может быть достаточно сложной. Однако для простейших примеров она может быть рассмотрена.


Литература

1. Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986.

2. Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.

3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974.

4. В. П. Попов Основы теории цепей – М.: Высшая школа, 2000