Смекни!
smekni.com

Особенности работы счетчиков излучения (стр. 6 из 7)

Внешний вид некоторых газовых счетчиков приведен на рис. 14. Торцовые счетчики применяются также для регистрации бета-частиц с малой энергией (меньше 0,3 Мэв), однако толщина слюдяной пленки у них обычно больше, чем у торцовых счетчиков для регистрации альфа-частиц, и составляет 2 - 6 микрон. К такому виду счетчиков относится счетчик МСТ-17.

Для регистрации бета-частиц сравнительно большой энергии (больше 0,3 — 0,5 Мэв) обычно применяются цилиндрические счетчики с тонким (10 — 30 микрон) алюминиевым (для спиртовых и метилалевых счетчиков) или стальным (для галогенных счетчиков) корпусом-катодом. К таким счетчикам относятся счетчики АС-2 (алюминиевый самогасящийся 2-й образец), СТС-5 и СТС-6 (стальной самогасящийся) .

Для регистрации гамма-излучения применяются счетчики с толстыми стенками (с толстым катодом из меди или других материалов).

Обычные цилиндрические бета-счетчики также широко используются для регистрации гамма-излучений; при этом они помещаются в достаточно толстый алюминиевый чехол, поглощающий бета-излучения.

Одной из важнейших характеристик, определяющих свойства счетчика как датчика дозиметрических приборов, является его эффективность. Эффективностью называется отношение числа радиоактивных частиц, вызвавших импульс газового разряда, к общему числу частиц, попавших в рабочий объем счетчика. Эффективность газовых счетчиков к альфа- и бета-частицам близка к 100%.

Однако указанную эффективность к бета-частицам не следует путать с эффективностью регистрации потока бета-частиц, воздействующих на внешнюю поверхность счетчика; последняя может иметь величину от близкой к 100% до нуля в зависимости от энергии бета-частиц и толщины стенок счетчика.

Эффективность счетчиков к гамма-квантам значительно меньше и имеет величину от 0,2 до 1,6%. Гамма-кванты регистрируются счетчиком главным образом за счет вторичных электронов, выбиваемых гамма-квантами из материала стенок счетчика. Поэтому эффективность зависит от энергии квантов, материала стенок и до некоторой степени от их толщины.

Так, у счетчиков, прикрытых достаточно толстым слоем алюминия (порядка 5 — 8 мм), в диапазоне энергий гамма-квантов от 0,2 до 2,5 Мэв эффективность изменяется в пределах от 0,1 до 1,2%, возрастая примерно пропорционально энергии. Благодаря этому скорость счета импульсов счетчика N, т. е. число импульсов в единицу времени, характеризует мощность дозы гамма-излучения в указанном диапазоне энергий квантов. Действительно,


где Sсч — рабочая поверхность счетчика, на которую воздействует гамма -излучение;

εγ — эффективность счетчика;

. Пγ— плотность потока гамма-квантов, зависящая от мощности дозы и энергии квантов:


Коэффициент поглощения µа гамма-излучения в воздухе в диапазоне энергий квантов от 0,1 до 2 Мэв практически является постоянной величиной поэтому:


где - практически постоянная величина, зависящая от величины рабочей поверхности счетчика.

Таким образом, чувствительность счетчика при измерении мощностей доз гамма-излучения зависит от величины поверхности его рабочего объема. Чем больше поверхность, тем большее число гамма-квантов будет воздействовать на нее в единицу времени при данной мощности дозы, тем чувствительнее счетчик. Однако с увеличением чувствительности уменьшается верхний измеряемый предел мощностей доз, так как предельная скорость счета ограничивается «мертвым временем» счетчика.

Так, например, предельная измеряемая мощность дозы гамма-излучения для счетчика СТС-5 составляет около 0,5 р/час. Путем уменьшения габаритов и рабочего объема созданы счетчики, обеспечивающие измерение мощностей доз до 5 р/час, до 50 р/час и больше.

Счетчики такого типа получили название малочувствительных.

Оценка качества счетчика и определение его рабочего напряжения обычно производятся по его счетной характеристике. Для снятия такой характеристики газоразрядный счетчик подключается к пересчетной установке, т. е. такой регистрирующей схеме, которая позволяет считать число возникающих на нагрузке счетчика импульсов напряжения, амплитуда которых превосходит некоторую пороговую величину. Счетной характеристикой называется зависимость зарегистрированного числа импульсов в единицу времени от напряжения питания счетчика при постоянной интенсивности облучения.

Счетная характеристика имеет вид, представленный на рис. 15. Как видно из рисунка, при напряжении на счетчике меньше U импульсы не регистрируются пересчетной установкой, так как они очень малы. Напряжение Uн, при котором появляется счет импульсов, называется напряжением начала счета. При дальнейшем увеличении напряжения скорость счета быстро увеличивается. В этой области счетная установка регистрирует не все попадающие в счетчик частицы, так как импульсы напряжения счетчика имеют разную величину в зависимости от первичной ионизации и других причин. Начиная с точки A и до точки Б, скорость счета почти не изменяется с возрастанием напряжения, т. е. на участке А — Б практически все частицы, производящие в счетчике начальную ионизацию, регистрируются.


Рис. 15 Счетная характеристика газового счетчика

Этот почти горизонтальный участок характеристики носит название «плато». Некоторое наблюдаемое увеличение скорости счета на участке «плато» объясняется появлением и увеличением числа ложных импульсов вследствие того, что гасящие примеси самогасящегося счетчика не обеспечивают гашение всех без исключения ложных импульсов.

При напряжениях больше UБ наблюдается резкий рост ложных импульсов и переход к непрерывному разряду. Рабочим участком счетной характеристики является «плато». Чем больше протяженность и меньше наклон «плато», тем лучше качество счетчика. Наклон «плато» принято оценивать увеличением скорости счета импульсов при изменении напряжения на 100 в, выраженным в процентах к средней скорости счета на участке «плато»:


У хороших счетчиков протяженность (ширина) «плато» порядка 100—200 в и наклон не превышают нескольких процентов. В самогасящихся счетчиках по мере распада многоатомных молекул гасящей примеси счетная характеристика постепенно ухудшается — укорачивается протяженность «плато» и увеличивается его наклон. Последнее вызывает необходимость проверки счетчиков в процессе работы с ними, так как могут появиться значительные ошибки в измерениях. Галогенные счетчики обладают значительно более устойчивой счетной характеристикой.

Рабочее напряжение счетчика выбирают в пределах «плато», учитывая, что излишне большое напряжение увеличивает амплитуду импульсов и счетчик будет быстрее выходить из строя; слишком малое напряжение (около начала «плато») вызывает опасность значительного уменьшения скорости счета импульсов вследствие случайного уменьшения напряжения питания.

В лабораторных приборах напряжение счетчика выбирается около середины счетной характеристики (50—80 в от напряжения начала счета).

Одним из параметров счетчика является его фон. Фон счетчика — это средняя скорость счета импульсов при рабочем напряжении и в отсутствии радиоактивных источников. Он определяется всеми посторонними ионизирующими излучениями: природным радиоактивным излучением земли и всех окружающих предметов, космическими излучениями и т. д.

Даже световое излучение (особенно прямые лучи солнца) способно вызывать появление импульсов в газоразрядном счетчике, если его рабочий объем не защищен светонепроницаемым слоем вещества.

Если счетчик помешен в свинцовое защитное устройство (свинцовый домик) с толщиной стенок 50 мм, то фон почти полностью обуславливается космическими лучами и природными загрязнениями радиоактивными веществами материалов, из которых сделаны счетчик и защитное устройство. Фон счетчика, замеренный в указанных условиях, называется темновым фоном и приводится в его паспортных данных.

V. СЧЁТЧИК ГЕЙГЕРА С ВЫСОКОВОЛЬТНЫМ ПИТАНИЕМ ОТ ПРЕОБРАЗОВАТЕЛЯ ПОСТОЯННОГО НАПРЯЖЕНИЯ НА ПОЛУПРОВОДНИКОВОМ ТРИОДЕ

Для разработки схемы счётчика слабого бета-излучения используем схему, приведённую на рис.16.


В схеме счётчика Гейгера, изображённой на рис.16, для питания лампы используется преобразователь напряжения на полупроводниковых приборах. Преобразователь состоит из генератора по трёхточечной схеме на полупроводниковом триоде 2N107, повышающего трансформатора и селенового выпрямителя с фильтром. Преобразователь преобразует напряжение 6-вольтовой батареи Б в стабилизированное напряжение 300 в постоянного тока, необходимое для питания лампы 1В86.

Индуктивностью колебательного контура генератора служит первичная обмотка малогабаритного трансформатора Тр1. Для осуществления обратной связи от неё сделан отвод. Возникающие колебания возбуждают во вторичной обмотке высокое напряжение, которое выпрямляется высоковольтным селеновым выпрямителем. Пульсации сглаживаются конденсатором С2. четыре последовательно соединённые неоновые лампы NE-2 и сопротивление R1 образуют стабилизатор напряжения.