Пусть Е- линейное пространство с конусом К и знак «
» есть отношение предпочтения по конусу К.Однако, миниэдральные конусы в конечномерных пространствах
обладают следующимфундаментальным свойством:если конус К миниэдрален, то каждое ограниченное сверху (соответственно, снизу) множество М элементов имеет точную верхнюю sup М (соответственно, точную нижнююinf M) грань.
Пример. Рассмотрим в пространстве с конусом
векторов из с неотрицательными координатами множество векторов , удовлетворяющих для заданного вектора неравенству .Тогда inf , sup не существует.
Аналогично, если
- множество векторов из , удовлетворяющих неравенству ,то sup , а inf не существует.
§3. Интегральные операторы
Большой интерес представляют линейные интегральные операторы
,действующие в различных пространствах Е функций, определенных на множестве W, которое мы предполагаем ограниченным и замкнутым подмножеством конечномерного пространства Rп[1], [16], [20].
Термин "интегральные уравнения" расплывчат. Обычно под интегральными уравнениями понимают уравнения, в которых неизвестная функция независимого (скалярного или векторного) аргумента встречается под знаком интеграла. Различают линейные и нелинейные интегральные уравнения, в зависимости от того зависит ли уравнение от неизвестной функции линейным или нелинейным образом. Многие линейные интегральные уравнения (в "одномерном" случае) могут быть записаны в виде
(1)где x: [a, b] → R — искомая функция, α, f: [a, b] → R и K: [a, b]×[a, b] → R — заданные функции. Функцию K обычно называют ядром интегрального уравнения.
Уравнение (1), когда K(t, s) = 0 при a ≤ t ≤ s ≤ b, называют уравнением Вольтерры. В противном случае его называют уравнением Фредгольма [2]. Уравнение Вольтерры, очевидно, оно может быть переписано в виде
Наиболее распространенными представителями нелинейных интегральных уравнений являются уравнения Урысона
Уравнения I и II рода
Если α(t) ≠ 0 при всех t
[a, b], то уравнение (1), очевидно, может быть переписано в виде (2)Уравнения такого вида называют уравнениями II рода, отличая их от уравнений I рода
(3)Если в некотором пространстве функций на отрезке [a, b] определить интегральный оператор
то уравнения (2) и (3), очевидно, переписываются в виде
x = Ix + f (4)
0 = Ix + f (5)
Прежде, чем объяснить разницу между уравнениями I и II родов, введем понятие корректности уравнения. Огрубляя ситуацию, говорят, что уравнение (4) или (5)корректно, если при любых f оно однозначно разрешимо и решение x непрерывно зависит от f. Более точно, говорят, что (линейное) уравнение корректно в паре (E1, E2) банаховых пространств функций на отрезке [a, b], если для любой f
E2 уравнение имеет единственное решение x E1 и, кроме того, найдется такая константа C, что ||x||E1 ≤ ||f ||E2.Разница между уравнениями I и II родов особенно ясно проявляется после записи интегральных уравнений в операторном виде. Суть здесь в следующем. Интегральные операторы в большинстве своем оказываются вполне непрерывными операторами. Для корректной разрешимости уравнения II рода, т. е. уравнения (4) при любой функции f необходимо и достаточно обратимости оператора I – I и ограниченности (I – I)–1, что в случае вполне непрерывного оператора I есть ситуация общего положения. Для разрешимости уравнения I рода необходима обратимость оператора I. В случае же вполне непрерывного оператора I–1 если он существует, необходимо, чтобы он являлся неограниченным [].
Уравнения I рода представляют собой существенно более сложный объект исследования.
§4. Интегральные уравнения с вырожденным ядром и уравнения
типа свертки
Выделим еще два класса линейных интегральных уравнений, часто встречающихся в математическом обиходе [2], [29]. Первый из них состоит из так называемых интегральных уравнений с вырожденным ядром. К ним относят интегральные уравнения, ядро которых представимо в виде
(6)Интегральные уравнения (скажем, Фредгольма II рода) с вырожденным ядром легко сводятся к системе алгебраических уравнений. Используя (6), уравнение (2) можно переписать в виде
(5)где
.Умножение (7) на ηj и интегрирование по t от a до b приводит к системе алгебраических уравнений относительно неизвестных cj:
в которой
,Уравнение Вольтерры типа свертки выделяется специальным видом ядра K(t, s) = k(t – s):
Название наследуется от интегрального оператора свертки
играющего роль умножения в банаховых алгебрах функций. Уравнение типа свертки весьма широко распространено в приложениях.
Уравнение Фредгольма типа свертки выглядит так:
Линейный оператор называется вполне непрерывным, если он переводит каждое ограниченное по норме пространства
множество в компактное множество.Почти во всякой физической задаче, которая может быть сформулирована с помощью линейных операторов, важной характеристикой типа задачи является спектр соответствующего оператора [13]. Одной из основных характеристик спектра оператора является спектральный радиус этого оператора. Напомним, что те значения
, при которых уравнение ,где
– рассматриваемый оператор, имеет единственное решение, а оператор ограничен, называются регулярными. Совокупность всех значений , не являющихся регулярными, называется спектром оператора и обозначается . Спектральным радиусом оператора называется число, определенное формулой