Смекни!
smekni.com

Підвищення ефективності роботи котельних агрегатів шляхом пульсаційно-акустичного спалювання палива (стр. 2 из 5)

У першому розділі розглянуто способи та варіанти технічного здійснення пульсаційно-акустичних впливів, що підвищують ефективність спалювання газоподібного палива. На підставі аналізу літературних джерел для досліджень обраний спосіб, пов'язаний із зовнішнім акустичним впливом на процес згоряння палива, технічне здійснення якого не вимагає конструктивних змін у котельному агрегаті та пальниках.

Дослідження впливу зовнішніх акустичних дій на процес горіння проводилися такими вченими як Л.А. Вуліс, Ш.А. Єршин, А.П. Ярін, О.А. Кузнєцов, Д.М. Хзмалян, Я.А. Каган, В.І. Фурлетов, В.А. Скляров, В.Є. Дорошенко, Ю.Я. Борисов, Е.І. Розенфельд, В.М. Смоленський, О.Б. Хаврошкин, Н.Н. Панченко та ін. Переважно це експериментальні дослідження, які виконувалися на лабораторних стендах у вузькому інтервалі характеристик турбулентного газового струменя факела.

Аналіз літературних джерел по акустичному спалюванню дозволяє констатувати:

· акустичні впливи викликають зміну конфігурації факела, причому істотна ця зміна в початковій частині факела;

· по своїй фізичній суті зміна конфігурації факела пов'язана зі зміною характеру вихроутворення у факелі, яке найбільш чуттєве до акустичних коливань у порівнянні з іншими газодинамічними процесами, що відбуваються у факелі;

· у зміні параметрів факела під дією акустичних коливань відзначене збільшення ступеня турбулентності, швидкості просування фронту горіння, інтенсивності тепловиділення, температури факела й, як наслідок цих змін, відзначене поліпшення якості згоряння палива, тобто зниження хімічного недопалу;

· при акустичному впливі на факел проявляється ефект резонансу, тобто аномальна зміна параметрів факела при збігу частот акустичного впливу із частотами коливань у факелі та усередині робочого об’єму камери згоряння.

Для розробки та впровадження пульсаційно-акустичного спалювання палива в топках парових котлів, необхідне вирішення ряду наукових і технічних завдань, які не досліджувалися раніше: визначення характеру вигоряння газоподібного палива за довжиною турбулентного факела, що перебуває під впливом зовнішніх акустичних пульсацій; дослідження впливу зовнішніх акустичних пульсацій на газодинамічну й теплову картину в робочому об’ємі камерної топки котла; розробка технології та апаратурного забезпечення системи зовнішніх акустичних впливів, яка адаптована до конкретних умов згоряння палива для різних типів котельних агрегатів.

Рішення цих завдань вимагає математичного моделювання. Аналіз існуючих математичних моделей, що описують процеси вигоряння газоподібного палива в об’ємі турбулентного факела, а також моделей газодинамічних і теплових процесів у робочому об’ємі камерної топки показав, що відомі моделі не дозволяють урахувати вплив зовнішніх акустичних дій. Це потребує розробки нового підходу при математичному моделюванні.

У другому розділі виконано теоретичні та експериментальні дослідження структури та характеристик турбулентного дифузійного факела при пульсаційно-акустичному спалюванні палива.

Теоретичні дослідження виконані шляхом математичного моделювання процесу вигоряння газоподібного палива на основі величини лінійного розміру вихорів. Еквівалентний діаметр вихорів, що утворюються, залежно від конструктивних характеристик пальника і відповідно до характеру вихороутворення, приймався рівним dВ=

(де
- діаметр отворів, через які витікає газ у потік повітря, м). При русі вихорів у потоці, розміри вихорів збільшуються внаслідок їхньої асоціації до dВ=
.

Математичне моделювання виконано шляхом розділення факела на лінійні відрізки, що відповідають розмірам вихорів, і опис процесу вигоряння в об’ємах цих відрізків. Допущеннями при моделюванні були фіксований об’єм факела, а також рівномірний попередній підігрів газу в об’ємі вихорів до температури запалювання.

На рис. 1 представлена розрахункова схема для моделювання процесу вигоряння газоподібного палива.

Математичне моделювання виконане шляхом спільного рішення диференціальних рівнянь теплообміну, руху й нерозривності газового потоку, перетворених з урахуванням прийнятих фізичних уявлень про утворення вихорів у турбулентному факелі та з урахуванням діаметрів вихорів (dВ):

, (1)

, (2)

, (3)

де

- щільність (кг/м3), теплоємність (кДж/(кг·К)), температура (К) газоповітряної суміші;
- час присутності вихору в потоці, с;
- коефіцієнт випромінювання;
- локальний коефіцієнт гідравлічного опору руху вихору в потоці за рахунок руйнування вихору в процесі вигоряння, обумовлений значенням числа Re;
- коефіцієнт випромінювання абсолютно чорного тіла, Вт/(м2·К4);
- швидкість одиночного вихору в турбулентному потоці, яка обумовлена для даного рішення рівнянням
, м/с (тут
- середня швидкість потоку, м/с).

Інтенсивність вигоряння газу за довжиною факела, а, отже, і концентрація газу визначалася за зміною щільності газоповітряної суміші, що підтверджувалося результатами експериментів. При цьому зміна концентрації газу підкорялася рівнянню

. Значення показника ступеня
який дозволяє врахувати розміри вихорів, визначається рішенням рівнянь (1-3):

, (4)

, (5)

(6)

де

- вихідне значення щільності газоповітряної суміші (кг/м3);
- швидкість просування фронту горіння в газоповітряній суміші, м/с;
- час повного вигоряння вихору за довжиною факела, с; Т0 – температура запалювання газоподібного палива, К; ТК – температура газів наприкінці процесу горіння, К.

Для перевірки адекватності математичної моделі, проведено серію фізичних експериментів з аналізу процесу вигоряння природного газу в об’ємі турбулентного дифузійного факела. Характеристика досліджених режимів при різних витратах природного газу (

) наведена в табл. 1.

Таблиця 1

Характеристика режимів дифузійного спалювання природного газу

Режим спалювання Re
103
uCP, м/с
10-4, м3
Перехідний 3,6 5,0 3,93
5,0 7,0 5,50

Розвинений

турбулентний

8,0 10,0 7,85
11,0 15,0 11,78

При проведенні досліджень аналізувався вплив діаметра турбулентних вихорів (dВ) на характер вигоряння газоподібного палива. Розмір турбулентних вихорів змінювали шляхом установки на зрізі пальника сітки з діаметром отворів

=0,002 м, що дозволило провести дослідження в діапазоні
=0,0002
0,004 м.

Характер зміни концентрації природного газу за довжиною факела визначався за зміною концентрації СО2 у продуктах згоряння.

Порівняння чисельних і експериментальних даних показало, що розроблена модель, якісно й кількісно відповідає реальному процесу вигоряння палива в об’ємі турбулентного факела. Відносна похибка розрахунку концентрації природного газу за довжиною факела не перевищує 7-15 %.

З використанням математичної моделі було проведено чисельні дослідження процесу вигоряння природного газу в об’ємі турбулентного факела в діапазоні варіювання вихідних даних (див. табл. 2), характерних для роботи котла ДКВР-10-13 з пальникомГМГ5,5/7 при різних відносних теплових навантаженнях (

) на котел.

Таблиця 2