Діапазони варіювання вихідних даних
dВ, мм | Re 105 | uCP, м/с | , м3/с | |
0,5 1,5 | 1 20 | 1,4 4,3 | 3,0 9,0 | 0,082 0,246 |
Результати розрахунково-теоретичних досліджень у вигляді зміни відносної концентрації природного газу за довжиною факела (
) представлені на рис. 2.Аналіз результатів розрахунку показав, що концентрація горючого газу за довжиною факела в значній мірі залежить від розмірів вихорів, а, отже, від інтенсивності сумішоутворення. Вигоряння газу в об’ємі вихорів dВ=1
5 мм є локальним або об'ємним вибухом залежно від характеру перемішування палива з повітрям. Організація спалювання газу з домінуючим масштабом вихорів dВ=1 5мм може негативно позначитися на роботі паливовикористовуючого агрегату. Вигоряння газу в об’ємі вихорів середнього масштабу dВ=5 10 мм є з погляду теорії горіння об'ємним вигорянням газу, а в об’ємі вихорів dВ>10 мм – поверхневим.Розрахунково-теоретичні дослідження дозволили визначити вплив лінійного розміру вихорів на інтенсифікацію процесів сумішоутворення та вигоряння газоподібного палива в об’ємі турбулентного дифузійного факела, що перебуває під зовнішнім пульсаційно-акустичним впливом.
На основі математичної моделі встановлено вплив лінійного розміру вихорів на вид амплітудно-частотної характеристики факела
, Гц , (7)що дозволило уперше розрахунковим шляхом визначити діапазон частот амплітудно-частотної характеристики факела залежно від конструктивних характеристик пальника.
У третьому розділі розроблена й адаптована математична модель теплових і газодинамічних процесів у топці парового котла при пульсаційно-акустичному спалюванні палива.
В основу математичного моделювання покладено спільне рішення диференціальних рівнянь теплообміну, руху й нерозривності газового потоку в об’ємі камерної топки. У результаті визначені швидкості та температури продуктів згоряння за перерізом топки, характер зміни температур, а також зміна положення максимуму температур за довжиною факела при пульсаційно-акустичному впливі.
Об'єктом математичного моделювання була топка парового котла ДКВР-10-13. Розрахункова схема топки котла, що показує її конфігурацію, розміщення пальників, місце розташування вихідного газоходу й конструктивні розміри топки, представлена на рис. 3.
Для математичного моделювання, відповідно до фізичної суті процесів, що відбуваються, об’єм топки розділено на дві частини (див. рис. 3).
Перша частина (з боку пальників) з газодинамічної точки зору представляє собою струминний плин газу безпосередньо перед пальниками. Профілі швидкості тут описуються рівнянням Шліхтінга. Струминний плин газу вдалині від пальника деформовано внаслідок втікання газу в потенційну область плину. Деформація профілю швидкості в цьому випадку відбувається за експоненціальним законом, а швидкість газу визначається рівнянням, отриманим у результаті рішення рівняння Ейлера методом власних функцій:
, (8)де uШ – швидкість газу в перерізі струменя відповідно за профілем Шліхтінга;
- радіус вихідного перерізу пальника; - коефіцієнт члена ряду, .Для визначення швидкостей газу в другій частині топки, з потенційним плином газу, використане рішення рівняння Лапласа методом власних функцій. Власні функції для розглянутої задачі мають вигляд:
Х=
, (9)У=
, (10)Z=
, (11)де
, , - власні числа, обумовлені виразами: , , (тут k і n – індекси підсумовування членів ряду).Отримані значення швидкостей газу в топці використані при описі теплових процесів, який виконувався шляхом спільного рішення рівняння теплообміну й руху методом кінцевих різниць з визначенням температури і концентрації продуктів згоряння за довжиною факела та по висоті топки.
Адекватність математичної моделі перевірена шляхом порівняння результатів математичного моделювання з результатами, отриманими при промисловому випробуванні системи пульсаційно-акустичного спалювання природного газу в топці парового котла ДКВР-10-13. При використанні математичної моделі початкова температура при розрахунках приймалась рівною експериментальній (див. рис. 4) температурі газоповітряної суміші на перерізі амбразури пальників (по осях пальників). Порівняння результатів чисельного дослідження й даних випробувань показало, що похибка розрахунку температури уздовж вісі факела не перевищує 5-14%.
З використанням математичної моделі проведено чисельні дослідження й розраховані температури в робочому об’ємі камерної топки котла ДКВР-10-13 при роботі котла з відносним тепловим навантаженням у діапазоні значень
=0,4 1,5. Дослідження проведені при звичайному режимі роботи котла та з впливом акустичних пульсацій на процес спалювання палива. Результати розрахункових досліджень температур за віссю пальника 1 (див. рис. 3) представлені на рис. 4.Чисельні дослідження дозволили встановити наступне:
- робота котла при відносних теплових навантаженнях нижче 0,6 від номінального характеризується низьким температурним рівнем у топці через зниження витрати продуктів згоряння й появи в топці холодних застійних зон;
- при роботі котла з впливом акустичних пульсацій положення максимального значення температур при всіх режимах його роботи переміщається до вихідного перерізу амбразури пальника й становить 0,5
0,7м.Отримані в цій главі значення температур газу, а також дані про зміну положення максимуму температур використано при комплексному аналізі ефективності впливу акустичних пульсацій на показники роботи парового котла.
У четвертому розділі наведено результати експериментальних досліджень, що підтверджують позитивний вплив зовнішніх пульсаційно-акустичних дій на якість спалювання газоподібного палива, та їхня залежність від розмірів топки парового котла.
В основу методики експериментальних досліджень покладено застосування резонансного ефекту при пульсаційно-акустичному спалюванні палива, що полягає в збігу частот зовнішніх вимушених акустичних пульсацій із частотами пульсацій у топці парового котла. Дослідження пульсаційно-акустичного спалювання палива проводилися в промислових умовах на паровому котлі ДКВР-10-13. Вид котла й необхідне апаратурне забезпечення для визначення акустичних характеристик топки представлені на рис. 5.
Виміри акустичних характеристик топки парового котла виконувалися за допомогою комплекту акустичної апаратури фірми “Brьel & Kjжr”.
Дослідження системи пульсаційно-акустичного спалювання палива виконано у два етапи.
На першому етапі визначалися власні частоти акустичних коливань у робочому об’ємі топки парового котла для дотримання резонансу із частотами зовнішніх акустичних коливань. Одночасно із записом амплітудно-частотної характеристики виконувалися виміри температур у камері згоряння, здійснювався хроматографічний аналіз продуктів згоряння, відібраних за топкою, і обчислювався хімічний недопал палива. Вимір температур у топці котла виконувався шляхом зондування топки по глибині й по ширині в горизонтальній площині.
На другому етапі фіксувалися зміни теплотехнічних характеристик роботи парового котла внаслідок впливу на факел акустичних коливань із частотою 145 Гц (рівень звукового тиску 108Дб), що була прийнята як робоча й відповідала одному з максимумів звукового тиску на амплітудно-частотній характеристиці топки. Акустичні коливання, що порушувалися динамічним збудником, установленим в оглядовому вікні топки котла, направляли на факел.