Смекни!
smekni.com

Разработка электропривода лифта для высотного здания (стр. 1 из 4)

Введение

Целью данного курсового проекта является разработка электропривода лифта для высотного здания.

Техническими требованиями для проектируемого электропривода является питание от общепромышленной 3 фазной сети переменного тока напряжением 380 В, частотой 50 Гц.

В динамических режимах работы (пуск, торможение) привода должно соблюдаться условие:

а £ аДОП,

где аДОП – допустимое по условиям работы ускорение.

По условию на курсовое проектирование заданы следующие технические параметры:

1) грузоподъемность лифта G1 = 7,5 кН;

2) вес кабины G2 = 11,8 кН;

3) вес погонного метра каната G3 = 14,8 Н;

4) максимальная высота подъема Н = 70 м;

5) максимальное количество остановок n = 20;

6) точность останова ±m = 20 мм;

7) коэффициент загрузки кабины лифта К1 = 0,75;

8) число несущих канатов К2 = 4;

9) КПД системы h = 0,85;

10) скорость перемещения кабины V = 2,5 м/с;

11) передаточное отношение редуктора i = 18,3;

12) радиус ведущего канатного шкива R = 0,8;

13) жесткость 1 метра каната С = 2,13*106 Н/м.


Дополнительно в задании указано, что момент инерции вращающихся частей кинематической схемы (кроме двигателя) составляет 25% от момента инерции двигателя.

По технологии эксплуатации лифт должен обеспечивать нормальную работу и режим наладки, при скорости 25% от номинальной.


1 Анализ и описание системы «электропривод – рабочая машина»

1.1 Количественная оценка вектора состояния или тахограммы требуемого процесса

По условию эксплуатации лифта требуется обеспечить точность останова ±m = 20 мм. Это означает, что электропривод перед торможением должен иметь скорость, обеспечивающую данную точность торможения. Скорость определим по формуле 1:

VПОН = ÖК12ДОП2*t02 + 2*К2ДОП*(±m)/КП – К1ДОП*t0,

Где К1 = ;

К2 = ;

КП = 1,05…1,25 – поправочный коэффициент;

аДОП = 3 м/с2 – допустимое ускорение для пассажирских лифтов /1/;

t0 = 0,2…0,25 с – суммарное среднее значение времени срабатывания всех последовательно действующих в схеме управления аппаратов;

DV/DVП0 = 0,2…0,5 – относительное отклонение остановочной скорости;

Dt/t0 = 0,15 – относительное отклонение параметра t0;

Dа/аДОП = 0,1…0,5 – относительное отклонение ускорения.

К1 = = 0,5.

К2 = = 1.

VПОН = Ö0,52*32*0,2252 + 2*1*3*0,02/1,15 – 0,5*3*0,225 = 0,129 м/с.


Полученное значение VПОН означает, что для обеспечения точности останова необходимо предварительно переходить на пониженную скорость VПОН = 0,129 м/с и только потом тормозиться до 0.

Время разгона до номинального значения скорости при пуске:

tП = .

tП = = 0,83 с.

Путь, проходимый кабиной лифта при разгоне:

SП = .

SП = = 1,041 м.

Время торможения от номинальной скорости до пониженной:

tТП = .

tТП = = 0,79 с.

Путь, проходимый кабиной лифта при торможении до пониженной скорости:

SТП = .

SТП = = 0,93 м.


Время торможения до 0:

tТ0 = .

tТ0 = = 0,043 с.

Путь, проходимый кабиной лифта при торможении до 0:

SТ0 = .

SТ0 = = 0,0027 м.

Количество остановок по заданию равно n = 20. Расстояние между остановками:

L = .

L = = 3,5 м.

Суммарное расстояние, проходимое кабиной лифта в установившихся режимах:

LУСТ = L – SП – SТП – SТ0.

LУСТ = 3,5 – 1,041 – 0,93 – 0,0027 = 1,5263 м.

Принимаем время работы на пониженной скорости равное tПОН = 1с.

Расстояние, проходимое кабиной лифта на пониженной скорости:

SПОН = VП*tПОН.

SПОН = 0,129*1 = 0,129 м.

Расстояние, проходимое кабиной лифта на номинальной скорости:

SН = LУСТ – SПОН.

SН = 1,5263 – 0,129 = 1,3973 м.

Время работы на номинальной скорости:

tН = .

tН = = 0,55 с.

Время, затрачиваемое кабиной лифта на движение между остановками:

tРАБ = tП + tН + tТП + tПОН + tТ0.

tРАБ = 0,83 + 0,55 + 0,79 + 1 + 0,043 = 3,213 с.

Принимаем среднее время паузы в работе, затрачиваемое на выход и вход пассажиров tПАУЗЫ = 10 с.

Принимая во внимание, что количество остановок n = 20 и то, что в общий цикл входит как подъем кабины лифта так и опускание, общее время цикла опускания-подъема со всеми остановками равно:

ТЦ = 2*(tРАБ + tПАУЗЫ)*n.

ТЦ = 2*(3,213 + 10)*20 = 528,52 с = 8,8 мин.

Построение тахограммы процесса произведем после построения нагрузочной диаграммы.


1.2 Количественная оценка моментов и сил сопротивления

Принимая во внимание, что в задании на курсовое проектирование имеются данные только по жесткости канатов, можно представить механическую систему лифта как двухмассовую систему. При этом при рассмотрении возьмем случай, когда кабина находится внизу. Принимаем, что в состав J1 входит масса электродвигателя, редуктора и ведущего шкива. По заданию на курсовое проектирование:

J1 = 1,25*JДВ.

В состав второй массы следует внести массу кабины и канатов:

J2 = JК.ПР. + JКАБ.ПР.,

Где JК.ПР. – приведенный к валу двигателя момент инерции канатов;

JКАБ. ПР. – приведенный к валу двигателя момент инерции кабины.

Момент инерции канатов, приведенный к валу двигателя:

JК.ПР. = ,

где RПР – радиус приведения.

Радиус приведения определяется по формуле:

RПР = .

RПР = = 0,0437 м.

JК.ПР. = = 1,61 кг*м2.

Найдем приведенный к валу двигателя момент инерции загруженной кабины:

JКАБ.ПР. = .

JКАБ.ПР. = = 3,43 кг*м2.

Суммарный момент инерции второй массы:

J2 = 1,61 + 3,43 = 5,04 кг*м2.

Суммарная жесткость канатов между массами J1 и J2 может быть определена исходя из следующих выражений при паралельно-последовательном соединении элементов жесткости 1 метра каната.

При последовательном соединении:

= S.

При параллельном соединении:

СS = SСК.

Приведение жесткости к валу двигателя:

СПР = СК*RПР2.

Жесткость каната длиной Н:

= 70*.

= 70*.

С70 = 30428,57 Н/м.

Жесткость 4 параллельных ветвей канатов:

С470 = К270.

С470 = 4*30428,57 = 121714,28 Н/м.

Приведенная к валу двигателя жесткость С12:

С12 ПР. = 121714,28*0,04372 = 232,43 Н/м.

Принимая во внимание, что на данном этапе не известен момент инерции двигателя, и поэтому, невозможно определить момент инерции первой массы, условно примем, что:

JS =J1 + J2 = J2.

JS = 5,04 кг*м2.

Динамический момент в переходных режимах опеределяется по формуле:

МДИН = JS*E,

Где E – угловое ускорение.

E = .

E = = 68,64 с-2.

МДИН = 5,04*68,64 = 345,99 Н*м.

Статический момент при подъеме кабины:

МС = .

Статический момент при опускании кабины:

МС = .

В процессе работы возможны два различных режима загрузки: с пустой кабиной; с загруженной кабиной. Принимая это во внимание, найдем моменты нагрузки для различных режимов.

Подъем пустой кабины:

МСПП = = 606,87 Н*м.

Подъем груженой кабины:

МСПГ = = 907,74 Н*м.

Опускание пустой кабины:

МСОП = = 438,46 Н*м.

Опускание груженой кабины:

МСОГ = = 655,84 Н*м.

По полученным значениям построим механическую характеристику механизма (рисунок 1.3).

По полученным значениям МС и МДИН строим нагрузочную диаграмму и тахограмму за цикл работы (рисунок 1.4). Для упрощения приведем только два отрезка (подъем и опускание груженой кабины, как наиболее тяжелых режима).

Для построения нагрузочной диаграммы найдем моменты, действующие в динамических режимах:

МСПГ + МДИН = 907,74 + 345,99 = 1253,73 Н*м.

МСПГ – МДИН = 907,74 – 345,99 = 561,75 Н*м.

МСОГ + МДИН = 655,84 + 345,99 = 1001,83 Н*м.

МСОГ – МДИН = 655,84 – 345,99 = 309,85 Н*м.

Рассчитаем эквивалентный момент нагрузки по формуле:

МЭКВ = Ö.

МЭКВ = Ö

= 1173,62 Н*м.

Определим продолжительность включения двигателя:

ПВР = *100%.

ПВР = *100% = 24,31%.

Произведем перерасчет на стандартное значение ПВСТ = 100%.:

МЭКВ(ПВСТ) = МЭКВ*Ö.

МЭКВ(100%) = 1173,52*Ö = 578,65 Н*м.

Расчетная скорость электродвигателя:

wДВ = .

wДВ = = 57,18 с-1.

Расчетная мощность двигателя:

РРАСЧ = К*МЭКВ(100%)*wДВ,

Где К = 1,1 – коэффициент запаса по динамике.

РРАСЧ = 1,1*578,65*57,18 = 36395,9 Вт.


2 Анализ и описание системы «электропривод – сеть» и «электропривод – оператор»

По условию на курсовое проектирование задано, что электропривод лифта получает питание от 3 фазной сети переменного тока напряжением 380В, частотой 50 Гц. Принимая во внимание полученную расчетную мощность двигателя можно с уверенностью считать, что независимо от системы электропривода, на которой будет реализовываться электропривод лифта, Данные параметры питающей сети могут обеспечить требуемое качество.

В электроприводе лифта управление выполняется из различных мест:

1) из кабины лифта;

2) с каждого этажа.

В кабине лифта находится пульт управления, на котором может задаваться необходимый этаж, а также производиться остановка движения. Пульт имеет в своем составе светосигнальную аппаратуру, предназначенную для сигнализации выбранного этажа.

На каждом этаже находится пульт, на котором вызывается лифт на данный этаж. Рядом с кнопкой вызова находится светосигнальная лампа, предназначенная для сигнализации того, что лифт находится в движении, а также при вызове с данного этажа – что вызов принят.


3 Выбор принципиальных решений

Производим оценку различных вариантов. В качестве рассматриваемых вариантов принимаем:

1) АД с фазным ротором;