Количество теплоты, передаваемой через поверхность нагрева i-го корпуса
Коэффициент теплопередачи от конденсирующегося пара к кипящему раствору
Проверка: q3=∆tп3*k3=24,399*1040,64=25222
м² 3691,47 ккал/ч =2195706 ВтПроверка: q2=∆tп2*k2=17,515*1408,36=24667
м² 3685,92 ккал/ч =2037887 ВтПроверка: q1=∆tп1*k1=13,306*1730,81=22490
м²Средняя поверхность нагрева:
м²Проектирование аппарата
По табл. 2.16 |7| принимаем поверхность нагрева F=80 м2; диаметр корпуса аппарата Dвн=0,8 м. Число труб в греющей камере:
где Нтр – длина (высота) трубки, м. Нтр = 3 м – подвесная камера; Нтр = 4 м – с выносным сепаратором; dср – средний диаметр трубок, d = 38÷50 мм.
Произведем расчет штуцеров выпарного аппарата. Диаметр штуцера определим по формуле
,где
– объемный расход теплоносителя, м3/сек; G – массовый расход теплоносителя, кг/ч; γ – плотность пара, кг/м3; w – скорость пара, м/сек.Скорость пара принять 20 м/сек.
Расчеты сводим в табл.
Таблица расчетов штуцеров выпарной установки
Наименование штуцера | Расход пара, кг/ч | Давление пара, ат | Плотность, кг/м3 | Секундный расход, м3/с | Скорость пара, м/с | Диаметр, мм | |
расчетный | принятый | ||||||
Вход греющего пара | 3521 | 6,2 | 3,24 | 0,302 | 20 | 138 | 150 |
Выход вторичного пара…………. | 3685,9 | 4,47 | 2,21 | 0,46 | 20 | 169 | 170 |
Вход раствора | 18000 | 1076 | 0,005 | 1 | 76 | 80 | |
Выход упаренного раствора………. | 6750 | 1218 | 0,0015 | 0,5 | 62 | 70 |
Расчет барометрического конденсатора
Определяем конечную температуру охлаждающей воды при давлении в конденсаторе
ат, tп =59,8º C, удельный объем пара uп = 7,749 м3 /кг. Температура охлаждающей воды t´2 =10 0С.Температура выходящей охлаждающей воды меньше tп на δ = 1 – 30 С; вследствие несовершенства теплопередачи принимаем δ = 30 С, тогда
t»2 = tп – δ = 59,8 – 3=56,8 º C.
Кратность охлаждения составляет
m = W/D = (i – t»2)/(t»2 – t´2) = (623,62 – 56,8)/(56,8 –10)=12,112 кг/кг
Часовой расход охлаждающей воды при количестве конденсируемого пара после 3-го корпуса составляет:
W=Dm=3691,47 ∙12,112 =44709,4 кг/ч
Диаметр конденсатора при скорости в конденсаторе ω, равной 15 м/сек:
dк =0,0188∙√(D∙uп/ω)=0,0188∙√(3691,47∙7,749/15)=0,79 м
Принимаем dк =800 мм.
Согласно табл. 2–20 барометрический конденсатор имеет следующие размеры: высота конденсатора H= 5088 мм, ширина полки b= 500 мм и высота борта равна 40 мм. Число полок – 6.
Диаметр барометрической трубы определяем из расчета на пропуск смеси воды и конденсата. Из уравнения
W + D = (πd2/4)∙ω,
полагая ω = 1 м/сек, получаем:
Принимаем d=150 м.
Высота водяного столба, соответствующая заданному вакууму,
H1=10,33∙B/760 = 10,33∙560/760=7,6 м
Принимаем предварительно полную высоту трубок H=9 м
Число Рейнольдса для трубок при коэффициенте кинематической вязкости воды при температуре 59,8 º C, равном ν = 0,517 м2/с
Re = ω∙d/ν = 1∙0,15∙106/0,517=232 108,3
Коэффициент трения для гладких труб при значениях Re = 105 - 103 определяется по формуле Никурадзе
λ = 0,0032 + 0,221/(Re0.237)=0.0032+0,221/(232108,3)0,237=0,015
Потеря напора на трение и местные сопротивления в барометрической трубе
H2=
м.вод. ст.где d и l – диаметр и длина барометрической трубы; 2,5 – коэффициент, учитывающий потери на местные сопротивления.
Полная высота трубы
H=H1+H2+H3=7,6+0,18+0,5=8,28 м
где H3= 0,5 м – поправка, учитывающая возможные колебания вакуума в конденсаторе или уровня воды в водоприемнике.
Принимаем высоту трубы Н=9 м
Определение производительности вакуум-насоса:
GВ=(0,25*(D+W)+100D)/10000=34,4 кг/ч
tВ=10+4+0,1 (59,8–10)=18,980С
рК=0,2*100000=2000 мм вд. ст.
рП=200 мм вд. ст.
рВ=2000–200=1800 мм вд. ст.
VВ=(29,27*GВ*(273+tВ))/рВ=163,4 м3/ч=2,7 м3/мин
Принимаем ротационный водокольцевой вакуум-насос РМК-3 производительностью 5 м3/мин.
Проведем расчет выпарного аппарата на прочность.
Толщина стенок цилиндрической обечайки греющей камеры:
смПринимаем S=10 мм
σдоп=1340*0,9=1206 кгс/см2==118 МПа
Толщина стенок цилиндрической обечайки сепаратора:
смПринимаем S=10 мм
Толщина верхней крышки сепаратора:
смПринимаем S=10 мм
Толщина крышки корпуса:
см