Смекни!
smekni.com

Ферромагнитные жидкости (стр. 16 из 18)

Здесь 1/Rk - средняя кривизна поверхности, s0 - поверхностное натяжение.

- тензор электрических напряжений, а индексы "t" и "n" обозначают компоненты тангенциальные и нормальные к поверхности. Для замыкания системы (4.46) и (4.47) ее необходимо дополнить уравнением баланса поверхностного заряда, которое в общем случае имеет вид:

(4.48)

Первый член в правой части (4.48) представляет поверхностную дивергенцию конвективного тока, обусловленного переносом заряда движущейся жидкостью.

Плотность тока проводимости определяется законом Ома

. Вдали от капли напряженность электрического поля равна напряженности внешнего поля, а скорость движения окружающей каплю жидкости равна нулю. В начальной области значений напряженности электрического поля, когда скорость индуцированного им движения мала, конвективным переносом заряда можно пренебречь. Тогда, в данном приближении система уравнений (4.46) - (4.47) для малых стационарных отклонений формы капли от сферической в переменном однородном электрическом поле с угловой частотой ω, уравнение поверхности которой в сферической системе координат имеет вид

, дает
, где

(4.49)

-

максвеловское время релаксации свободного заряда. Соотношение (4.49) позволяет выявить ряд характерных особенностей поведения капли в электрическом поле. В области значений физических параметров капли и окружающей ее жидкости, в которой

(4.50)

капля сплюснута вдоль вектора Е [168]. Критическое значение частоты, при которой происходит восстановление сферической формы капли, определяется из соотношения:

(4.51)

Так как при ε12 = γ12 (как легко убедиться из соотношения (4.49)), деформация капли от частоты электрического поля не зависит, то при указанном соотношении электрофизических параметров меняется характер частотной зависимости капли. При εl212

степень растяжения капли вдоль вектора напряженности поля с ростом частоты уменьшается, а при εl212 увеличивается.

Таким образом, полученные результаты показывают, что принципиальную роль в поведении микрокапель магнитной жидкости играют свободные заряды на межфазных границах. Существенное значение при этом имеет и жидкое состояние гетерогенных включений. Действительно, в противоположном случае, вследствие стремления анизотропного тела в электрическом поле ориентироваться в направлении, которому соответствует минимальное значение коэффициента деполяризации, устойчивое состояние тела в виде сплюснутого вдоль электрического поля эллипсоида было бы невозможным. В случае жидких капель подобное положение может оказаться в области достаточно слабых полей устойчивым, благодаря явлению релаксации ее формы. При этом, уравнение для тензора анизотропии для таких сред можно предложить в виде:

где ζ0 - равновесное значение тензора анизотропии среды в электрическом поле; τ - время релаксации анизотропии формы капель, равное

Если характерное время поворота капли в электрическом поле

(
- коэффициент вращательного трения капли) больше времени релаксации ее формы τ, то может сохранять устойчивость форма в виде расположенного поперек электрического поля диска.

В случае сплющивания капли в низкочастотном диапазоне переменного электрического поля возможна компенсация ее деформации с помощью дополнительного воздействия сонаправленным с электрическим магнитного поля. Это явление определяет ряд свойств магнитных жидкостей с микрокапельной структурой, проявляемых ими в магнитных и электрических полях. Возникающая при совместном действии слабых электрического и магнитного полей анизотропия такой эмульсии, когда степень отклонения формы капель от сферической мала, представляется в виде суперпозиции анизотропии, наводимых каждым из полей в отдельности [175]. Тогда

(4 . 52)

где h - единичный вектор вдоль направления постоянного магнитного поля. Для эксцентриситета слабо деформированной в магнитном поле капли полученное в [152] соотношение в предельном случае малых е дает формулу

(4.53)

которая совпадает с соответствующей формулой для деформации капли в электрическом поле высокой частоты при замене ε на μ и значения напряженности электрического поля на его эффективное значение

. В результате для суммарной магнитной анизотропии эмульсии при сонаправленном действии переменного электрического и постоянного магнитного полей имеем:

(4.54)

Из соотношения (4.54) видно, что в случае выполнения неравенства (4.50) существует такая напряженность постоянного магнитного поля, сонаправленного электрическому, при которой результирующая анизотропия эмульсии отсутствует. Это имеет место при напряженности магнитного поля, квадрат которой равен:

(4.55)

Экспериментальное исследование эффекта компенсации деформации капель осуществлялось с помощью наблюдений в оптический микроскоп. При этом, использовалась ячейка для оптических наблюдений деформации микрокапель в электрическом поле, дополненная катушками Гельмгольца в качестве намагничивающей системы. Наблюдения осуществлялись следующим образом. Выбиралась капля для исследования. На электроды ячейки подавалось напряжение, измеряемое с помощью цифрового вольтметра. При этом капля деформировалась (сплющивалась) так, что ее малая полуось совпадала с направлением электрического поля. Затем, медленной регулировкой магнитного поля, сонаправленного с электрическим, капле возвращали ее исходную форму. Повышали электрическое поле и вновь компенсировали вызванную им деформацию капли соответствующим повышением магнитного поля. Исследования продолжали до значений электрического поля, при которых начинали возникать электро-вихревые течения, приводящие к разрушению капли. Было исследовано несколько десятков капель, на основании обработки результатов этих исследований построен компенсационный график в координатах Е22 , приведенный на рис. 33.

Рисунок 33. Компенсационный график анизотропии формы капель в сонаправленных электричеством и магнитном полях.

Анализ графика позволяет сделать вывод о наличии пропорциональности квадрата напряженности постоянного магнитного поля квадрату напряженности электрического поля, вплоть до напряженности электрического поля Е=200 кВ/м и подтверждает результаты теоретических исследований, согласно которым напряженности магнитного и электрического поля при компенсации связаны соотношением (4.55). Тангенс угла наклона прямой на рис. 33, равный 0,5 хорошо соответствует ожидаемой, согласно (4.55), теоретической величине при малых γ12.

2. Динамика структурных изменений и рассеяние света.

Как уже было отмечено, в магнитной жидкости с микрокапельной структурой в электрическое поле помимо сил поляризационного происхождения существенную роль играют кулоновские силы, обусловленные накоплением заряда на межфазных границах. Вследствие этого, в подобных системах возможно развитие специфических электрогидродинамических неустойчивостей, лимитируемых процессами релаксации заряда, а также формой капель. Электрогидродинамические процессы приводят к изменению структуры магнитной жидкости, что в свою очередь оказывает влияние на магнитные и оптические свойства такой МЖ. Так, например, благодаря этим процессам в магнитной жидкости наблюдается дифракционное рассеяние света, имеющее ряд особенностей [175,176].

Исследование характера электрогидродинамических неустойчивостей и рассеяния света проводилось в тонких слоях (20 -40 мкм) магнитных жидкостей, заключенных между прозрачными стеклами с токопроводящим покрытием. Наблюдение микроструктуры осуществлялось с помощью оптического микроскопа. При исследовании дифракционного светорассеяния применялся гелий-неоновый лазер, луч которого пропускали перпендикулярно плоскости ячейки. Характер рассеяния света наблюдали на экране, а относительную величину интенсивности рассеянного света регистрировали с помощью фотоэлемента и цифрового прибора. Кроме описанной, использовалась также измерительная ячейка, позволяющая создавать электрическое поле, перпендикулярное световому лучу, устройство которой аналогично измерительной ячейке, использованной ранее для исследования компенсации формы капель в сонаправленных электрическом и магнитном полях (рис.2.13).