Смекни!
smekni.com

Ферромагнитные жидкости (стр. 3 из 18)

откуда для слабых полей

.

Последнее выражение легко представить [16?] в виде:

, (1.11)

где

- намагниченность насыщения вещества частицы (магнетита),
- намагниченность насыщения магнитной жидкости (
),
- доля частиц с диаметром
. С учетом того, что
, для магнитной восприимчивости магнитной жидкости справедливо выражение:

(1.12)

Как видно из (1.10) зависимость крутизны начального участка кривой намагниченности от размера частиц определяется выражением

, которая может быть найдена из гистограммы распределения дисперсных частиц по размерам. Сравнение (1.12) с (1.4) показывает, что при проведении магнитогранулометрических расчетов в области слабых полей с применением (1.4) в случае полидисперсности системы величина
определяется выражением:

(1.13)

В случае сильных полей функция Ланжевена может быть представлена в виде

и тогда для намагниченности магнитной жидкости с учетом полидисперсности системы справедливо выражение:

(1.14)

При достаточно больших значениях напряженности внешнего поля, зависимость

от
должна быть близка к линейной, что дает возможность для графического определения
. При этом величина тангенса угла наклона зависимости
определяется величиной характерного размера дисперсных частиц. Как следует из (1.14), при одинаковом объемном содержании дисперсной фазы (одинаковом значении намагниченности насыщения) отличие тангенсов угла наклона зависимостей
обусловлено разным для рассматриваемых образцов значением множителя
, что подтверждается экспериментом [15 M. Дисс.]. Отметим также, что сравнение (1.5) и (1.14) показывает, что магнитогранулометрия в сильных полях в случае полидисперсности системы для диаметра частицы дает:

(1.15)

Таким образом, отличие размеров частиц полидисперсных магнитных жидкостей определенных по магнитным измерениям в слабых и сильных полях определяется тем обстоятельством, что в этих случаях по существу определяются разные величины:

и
.

Очевидно, что в первую очередь именно с этим, (а не с особенностями броуновского движения малых и больших частиц в слабых и сильных полях, как это указывается в некоторых работах) и связано различие результатов магнитогранулометрии, полученных при использовании начального участка кривой намагничивания и ее участка, соответствующего насыщению.

Рассмотрим намагничивание магнитных жидкостей с различным средним диаметром частиц, но с их одинаковой числовой концентрацией. Такие жидкости отличаются величиной намагниченности насыщения

, а также тангенса угла наклона начальных участков кривых намагничивания, а именно:

. (1.16)

Кроме того, для МЖ с большими частицами насыщение кривой намагничивания наступает при меньшем значении напряженности поля.

Нетрудно показать, что в области полей, близких к насыщению, зависимость (1.10) с учетом полидисперсности системы может быть представлена также в следующем виде:

,

(1.17)

На рисунке 6 приведены экспериментально полученные кривые намагничивания для двух образцов магнитной жидкости, отличающихся средними размерами частиц (

= 9 нм,
=14 нм), но с одинаковой расчетной концентрацией.

Рисунок 6. Кривые намагничения магнитных жидкостей с одинаковой числовой концентрацией, но с различным средним диаметром дисперсных частиц

На рисунке 7 представлены эти же зависимости в координатах

в области сильных полей.

Рисунок 7. Зависимость намагниченности от обратной величины напряженности поля магнитных жидкостей с одинаковой числовой концентрацией, но с различным средним диаметром дисперсных частиц (l-d=14 нм, 2-d=9 нм).

Как видно из рисунка 7 в области полей, близких к насыщению, представленные зависимости являются линейными с одинаковыми значениями тангенса угла наклона. Следовало ожидать, для МЖ с большим размером частиц зависимость становится линейной при более низких значениях напряженности поля. Однако, экспериментально это не было подтверждено, что возможно связано с проявлением диполь-дипольного взаимодействия, роль которого возрастает при укрупнении частиц.

§3. Магнитная восприимчивость магнитных жидкостей и ее функциональные зависимости

Согласно одночастичной модели, предполагающей возможность описания процессов намагничивания магнитных жидкостей с помощью теории Ланжевена, зависимость их магнитной восприимчивости от концентрации дисперсной фазы должна быть линейной. Однако, в первых же работах, посвященных исследованиям в этой области [16, 17] было показано, что она таковой не является.

На рисунке 8 приведена зависимость магнитной восприимчивости магнитной жидкости с магнетитовыми частицами и керосином в качестве дисперсионной среды от объемной концентрации дисперсной фазы [17], измеренной в переменном поле, частотой 200 Гц, при различных значениях напряженности дополнительно приложенного постоянного магнитного поля.

Рисунок 8. Зависимость относительной величины магнитной восприимчивости магнитной жидкости от объемной концентрации дисперсной фазы при отсутствии внешнего магнитного поля (кривая 1) и при различных значениях его напряженности; 2 - Н=280 А/м, 3- Н=360 А/м, 4 - Н=1200 А/м.

Как видно из рисунка, все графики являются нелинейными, при этом можно констатировать, что наиболее сильное изменение тангенса угла наклона представленных зависимостей наблюдается в области концентраций

4 -6%. Увеличение внешнего постоянного магнитного поля приводит к уменьшению нелинейности концентрационной зависимости магнитной восприимчивости вплоть до его полного исчезновения при напряженности поля
= 2 кА/м. Аналогичные зависимости получены также и при непосредственном использовании, в качестве измерительного, постоянного магнитного поля (с помощью баллистического метода). В последующем, о получении нелинейной зависимости магнитной восприимчивости магнитных жидкостей на основе керосина от объемного содержания магнетита сообщалось в работах А.Ф. Пшеничникова с соавторами [18,19]. Нелинейный характер зависимости магнитной восприимчивости от концентрации дисперсной фазы был обнаружен также для других типов магнитных жидкостей [20]. На рисунке 9 показана зависимость действительной части комплексной магнитной восприимчивости (частота 200 Гц) от концентрации магнетитовых частиц для магнитной жидкости на основе вакуумного масла, которая, как можно видеть из рисунка, заметно изменяет свою крутизну при концентрации
= 4%. Следует отметить, что во всех случаях, при проведении концентрационных исследований магнитной восприимчивости магнитных жидкостей, изменение концентрации дисперсной фазы, как правило, осуществляется путем последовательного разбавления исходного образца жидкостью, используемой в качестве дисперсионной среды.

Рисунок 9. Зависимость действительной части магнитной восприимчивости (кривая 2, f=200 Гц) и магнитной восприимчивости в постоянном поле (кривая 1) от объемной концентрации дисперсной фазы при напряженности измерительного поля 160 А/м.