Рисунок 12. Температурная зависимость обратной величины действительной (кривая 1) и мнимой (кривая 2) частей магнитной восприимчивости МЖ на основе керосина в интервале температур 170К<Т<273К
Максимум температурной зависимости был обнаружен также О’ Грэди и др. [96]. В дальнейшем, подобные исследования, вследствие возросшего к ним интереса, проводились рядом исследователей ([90, 100] и др.), которыми были получены аналогичные результаты.
При измерении
МЖ на основе керосина, при дополнительном воздействии постоянного магнитного поля, происходит изменение характера этой зависимости (рис.13), а именно, в области температуры затвердевания жидкости минимум сменяются максимумом (т.е. наблюдается минимум ). Следует указать условия представленной зависимости: образец сначала замораживали при температуре около - 400С, затем помещали его в постоянное магнитное поле и получали указанную зависимость мостовым методом при частоте 200 Гц путем повышения температуры до 60 – 700 С. Все описанные выше особенности температурных зависимостей магнитной восприимчивости исследованных образцов в области температуры их замерзания можно связать с блокировкой броуновских степеней свободы однодоменных частиц при затвердевании среды. Действительно, понижение температуры приводит к уменьшению вероятности тепловых флуктуаций магнитного момента частицы и затруднению его вращения относительно твердой матрицы. В этом случае, в используемом в качестве измерительного переменном магнитном поле, с периодом меньшим времени неелевской релаксации (определяемой выражением (1.1)) частица ведет себя как магнитожесткий диполь. Поэтому, намагничивание магнитной жидкости происходит за счет вращения твердой матрицы частицы в жидкой среде под воздействием магнитного поля. Естественно, что затвердевание дисперсионной среды приводит к блокировке таких вращений и, как следствие, уменьшению намагниченности и магнитной восприимчивости магнитной жидкости. Тот факт, что уменьшение магнитной восприимчивости при затвердевании среды происходит не скачкообразно, а плавно, по-видимому связано с полидисперсностью системы: в магнитной жидкости присутствуют достаточно малые частицы, сохраняющие неелевский механизм релаксации магнитного момента при достаточно низких температурах. Подтверждение правильности предполагаемых механизмов намагничивания магнитных жидкостей может быть получено с помощью исследования частотной зависимости их комплексной магнитной восприимчивости. Впервые такие исследования были предприняты М.М. Майоровым [].§4. Магнитодипольное взаимодействие и эффективные поля в магнитных жидкостях
Очевидно, что использование функции Ланжевена для описания процесса намагничивания магнитных жидкостей возможно, когда процентное содержание дипольных частиц в единице объема мало и их взаимодействием можно пренебречь. По оценкам Евдокимова [123,124 Моя Д.], применение уравнения Ланжевена оправдано, если концентрация частиц имеет порядок 0,1 объемных процентов. Объемная концентрация дисперсной фазы магнитных жидкостей достигает 20 – 25 %, в связи с чем возник вопрос о применимости уравнения Ланжевена для описания процесса их намагничивания. В первых работах [10 -13] расхождение экспериментально полученных кривых намагничивания с кривой Ланжевена объяснялось полидисперсностью системы. Однако, для распространенных в настоящее время высококонцентрированных магнитных жидкостей становится необходимым учет межчастичных взаимодействий. Можно предположить, что для этих целей могут быть использованы разработанные ранее теории для учета дипольного взаимодействия молекул при поляризации жидких диэлектриков. Анализ концентрационной зависимости магнитной восприимчивости магнитных жидкостей в слабых полях позволяет судить о применимости таких теорий для учета магнитодипольного взаимодействия в магнитных жидкостях. Сравнение экспериментально полученной концентрационной зависимости магнитной восприимчивости устойчивых магнитных жидкостей с теоретическими кривыми Клаузиса-Моссоти и Дебая-Онзагера [61М .Д.], а также с линейной зависимостью магнитной восприимчивости от концентрации, следующей из теории Ланжевена, иллюстрируется рисунками 14 и 15.
Рисунок 14. Сравнение экспериментально полученной концентрационной зависимости магнитной восприимчивости МЖ на основе керосина (3) с теоретическими кривыми Клаузиса-Моссотти (1), Дебая-Онзагера (2) и Ланжевена (4) .
На рисунке 14 показана экспериментальная зависимость (кривая 3) магнитной восприимчивости от объемной концентрации дисперсной фазы для всего интервала исследуемых концентраций в сравнении с расчетными кривыми 1 и 2, удовлетворяющими теориям Клаузиса-Моссоти
, и Дебая-Онзагера . При расчетах теоретических кривых использовалось значение , определенное как величина, равная угловому коэффициенту начального участка зависимости (принималось, что вклад взаимодействия частиц на этом участке пренебрежимо мал). На рисунке 15 приведены те же кривые, но в области малых концентраций и в увеличенном масштабе.Рисунок 15. Сравнение экспериментально полученной концентрационной зависимости МЖ (3) с теоретическими кривыми Клаузиса-Моссотти (1) и Дебая-Онзагера (2) в области малых концентраций дисперсной фазы.
Из рисунков 14 и 15 можно заключить, что экспериментально полученная зависимость
наиболее близка к кривой Дебая-Онзагера, однако, отличается от всех теоретических кривых более резким изменением хода в области концентраций 5 – 6 %, что позволяет сделать вывод о наличии аномалии в концентрационной зависимости в этой области концентраций. Следует, однако, отметить, что для некоторых исследованных образцов указанной аномалии не наблюдалось, а в работах [] она и вовсе обнаружена не была. Из этих же работ следует, что экспериментальная кривая хоть и близка к теоретической кривой Дебая-Онзагера, но лежит ниже, а не выше ее, как это показано на рисунках 14 и 15. Вместе с тем, о полном согласии экспериментальных результатов с указанными теоретическими зависимостями ни в одной работе не сообщалось.Наиболее распространенным способом учета диполь-дипольного взаимодействия является введение так называемого эффективного поля. В случае диэлектриков, поле, реально действующее на один из диполей системы представляется в виде
. Введение этого понятия для расчета дипольного взаимодействия молекул диэлектрика, как известно, дает теория Лоренца, из которой, по-существу, и следует теоретическая кривая Клаузиса-Моссоти. Согласно этой теории значение , определяющее эффективность диполь-дипольного взаимодействия должно быть равным . Однако, несмотря на распространение этой теории, ее применимость не подтверждена даже для диэлектриков с неполярными молекулами, для которых она и была разработана. Поэтому, возможность описания с достаточной точностью с помощью этой теории системы магнитных диполей также вызывает сомнение. Вместе с тем, очевидно, что для первоначальных оценок возможно использование общей теории эффективного поля. В этом случае для намагниченности МЖ в приближении монодисперсности может быть записано выражение: , ()где m – магнитный момент дисперсной частицы, n – числовая концентрация частиц,
- константа эффективного поля.Из (0) для
нетрудно получить: , ()где
- объемная концентрация дисперсной фазы, - объем дисперсной частицы.Последняя формула может быть использована для расчета эффективных полей и оценки эффективности диполь-дипольного взаимодействия дисперсных частиц. При этом для расчета первого члена () может быть использовано известное значение намагниченности насыщения магнетита
и определенный с помощью электронного микроскопа средний объем дисперсных частиц, позволяющие рассчитать момент частицы ( ). Однако, намагниченность насыщения магнетита может колебаться в некоторых пределах [125 МД], а определение среднего объема магнитного керна частицы с помощью электронного микроскопа также представляет трудность, так как она может иметь немагнитный слой [13 МД]. В этой связи более корректным является определение величины как углового коэффициента начального участка зависимости , где вклад взаимодействия частиц пренебрежимо мал.