Смекни!
smekni.com

Технологія синтезу нанодротів (стр. 2 из 4)

Тиск Р, потрібний для подолання поверхневого натягу рідкого матеріалу для заповнення пор з діаметром dw, задається рівнянням Вашбурна:

dw=-4γcosθ/P(1.1)

де γ - поверхневий натяг рідини і θ - контактний кут між рідиною та шаблоном. Для зменшення потрібного тиску й отримання максимального фактору заповнення зменшенням поверхневого натягу та контактного кута використовують деякі суфрактанти. Наприклад, введення Си у розплав Ві може сприяти заповненню пор у шаблоні з анодного алюмінію рідким Ві та може збільшити число виготовлених нанодротів. Але деякі суфрактанти можуть викликати проблеми забруднення [12].

Нанодроти, виготовлені методом інжекції під тиском, зазвичай мають високу кристалічність та переважну кристалічну орієнтацію вздовж осі дроту. Наприклад, на рис. 1.2. наведено дифракційну картину зборок трьох різних діаметрів дротів з інжекційним тиском ~ 5,000psi, яка показує, щопереважна (>80%) кристалічна орієнтація осей дротів у 95 нм та 40 нм діаметрі Ві нанодротів є, відповідно, нормальними до (202) та (012) площин решітки. Вони позначаються [10

1] та [01
2] при використанні гексагональної елементарної комірки, що передбачає напрямок росту кристалу залежним від діаметру дроту. З іншого боку, 30 нм нанодроти Ві, виготовлені з використанням набагато вищого тиску > 20,000psi, показують іншу кристалічну орієнтацію - (001) вздовж осі нанодроту. Це свідчить, що переважна орієнтація кристалу може залежати відприкладеного тиску по напрямку найбільш густої упаковки вздовж осі дроту для найвищого прикладеного тиску.

Рис. 1.2. Картина рентгенівської дифракції нанокомпозитів вісмут/анодний алюміній із середніми діаметрами дротів а - 40 нм. b - 52 нм. та c - 95 нм. Індекси Мілера, що відповідають площинам решітки масивного Ві,наведені над індивідуальними піками. Більшість нанодротів Ві орієнтовані вздовж [10

1] та [01
2] напрямків для dw >60нм та dw <50нм, відповідно.Існування більш ніж однієї домінуючої орієнтації для 52 нм нанодротів Ві приписується трансляційній поведінці нанодротів проміжного діаметру, оскільки орієнтація переважного ростy зсувається від [10
1] до [01
2] із зменшенням dw.[11]

1.3 Електрохімічне нанесення

Метод електрохімічного нанесення привертає увагу як альтернативний метод виготовлення нанодротів. Традиційно електрохімія використовувалась для вирощування тонких плівок на провідних поверхнях. Оскільки електрохімічне нарощування є, як правило, контрольованим у напрямку нормалі до поверхні підкладки, цей метод можна розширити для виготовлення 1Dабо 0 -Dнаноструктур, якщо нанесення. зосереджено в межах пор відповідного шаблону. В електрохімічних методах тонка провідна металева плівка спочатку наноситься на один бік пористої мембрани для того, щоб служити катодом для гальванопроцесу. Довжина нанесених нанодротів може керуватися зміною тривалості процесу гальванонанесення. Цей метод використовувався для синтезу широкого кола нанодротів, наприклад, металів (Bi,Co,Fe,Cu,Ni,Ag,Au), провідних полімерів, надпровідників(Рb) напівпровідників (CdS) і навіть надграткові нанодроти з А/В складовими частинами (такі як Си/ Co) були синтезовані електрохімічно.

У процесі електрохімічного нанесення вибраний шаблон повинен бути хімічно стабільним впродовж процесу електролізу. Тріщини та дефекти у шаблонах шкодять росту нанодроту, оскільки процеси нанесення відбуваються переважно у більш доступних тріщинах, залишаючи незаповненими нанопори. Плівки слюди (що були протравлені частинками) або полімерні мембрани є типовими шаблонами, які використовують у простому електролізі при постійному струмі. Для використання плівок анодного окису алюмінію при електрохімічному нанесенні при постійному струмі ізолюючий бар'єрний шар, що відділяє пори від алюмінієвої підкладки, повинен бути видалений, і потім металева плівка напиляється на інший бік шаблону мембрани. Нанодроти Ві23були виготовлені з використанням електрохімічного нанесення при постійному струмі в алюмінієвих шаблонах з високим фактором заповнення. Рис.1.3а та 1.3б показують вид зверху і поперечний переріз СЕМ зображень зборки нанодротів Ві2Те3. Світлі області пов'язані з нанодротами Ві2Те3, темні області позначають пусті пори і сіра матрицянавколо них є алюмінієм [7].

При необхідності в електрохімічному нанесенні також використовують суфрактанти. Наприклад, при використанні шаблонів, отриманих з РММА/PSдіблокових кополімерів, метанол використовується як суфрактант для сприяння заповненню пор, що дає змогу досягти значень фактору заповнення —100%. Можливим застосовувати метод електронанесення при змінному струмі в шаблонах з анодованого алюмінію без видалення бар'єрного шару шляхом використання випрямляючих властивостей оксидного бар'єру. В процесі електрохімічного нанесення з використанням змінного струму, хоча прикладена напруга є синусоїдального та симетричною, струм є більшим впродовж катодних напівциклів, що робить нанесення домінуючим над очищенням, яке відбувається в наступних анодних напівциклах. Оскільки на дефектних місцях не відбувається випрямлення, швидкості процесів нанесення та очищення є рівними і матеріал не наноситься. Таким чином усуваються труднощі, пов’язані з наявністю тріщин. У такий спосіб в пори анодного шблону окису алюмінію були нанесені метали Со, Fe і напівпровідник CdS без видалення бар’єрного шару. На відміну від нанодротів, синтезованих методом інжекції, нанодроти, виготовлені електрохімічне, звичайно є полікристалічними, без переважних кристалічних орієнтацій, як спостерігалося у рентгенівських дослідженнях. Але існують деякі виключення. Наприклад, полікристалічні нанодроти CdS, виготовлені із застосуванням методу електрохімічного нанесення у шаблонах з анодного алюмінію, можливо мають переважну орієнтацію росту вздовж осі-с. Також виготовлялися нанодроти напівпровідників II-VI, включаючи CdS,CdSe,CdTe, шляхом електрохімічного нанесення при постійному струмі в шаблонах з анодного алюмінію у безводному електроліті. Більше того, монокристалічні нанодроти РЬ можуть формуватися імпульсним електронанесенням. Використання імпульсних струмів вважається кращим для вирощування кристалічних дротів, тому що металеві іони у розчині можуть регенеруватися у проміжку між електричними імпульсами, і таким чином, для кожного імпульсу нанесення можна досягти однорідних умов. Імпульсним електронанесенням були виготовлені також монокристалічні нанодроти Ag.

Рис. 1.3. а - СЕМ зображення зборки нанодротів Ві2Те3 в поперечному перерізі, що показує високий фактор заповнення пор; b - СЕМ зображення нанокомпозитної зборки нанодротів Ві2Те3 вздовж осі дроту.

Рис. 1.4.'' а - ПЕМ зображення одиничного Со(10нм)/Сu(10нм) багатошарового нанодроту; b - вибрана область зразка при великому збільшенні.


Однією з переваг методу електрохімічного нанесення є можливість виготовлення багатошарових структур в нанодротах Шляхом зміни катодних потенціалів в електроліті, що містить два різних типи іонів, можна контрольовано наносити різні металеві шари. У такий спосіб були синтезовані багатошарові нанодроти Со/Си. Рис. 1.4 показує ПЕМ зображення одиничного нанодроту Со/Си приблизно 40 нм у діаметрі. Світлими смугами зображені області, збагачені Си. Цей метод електронанесення забезпечує низький по собівартості підхід до виготовлення багатошарових 1 - Dнаноструктур [5].

1.4 Нанесення з парової фази

Нанесення нанодротів з парової фази включає фізичне нанесення з пари (ФНП - PVD), хімічне осадження з парової фази (CVD) і метал-органічне осадження з парової фази (MOCVD). Як і електрохімічне нанесення, нанесенням з парової фази зазвичай можливо виготовляти нанодроти меншого діаметру (<20нм), ніж методами інжекції під тиском, оскільки вони не залежать від високого тиску і поверхневого натягу, потрібних для впровадження матеріалу в пори.

У методі фізичного парового нанесення матеріал спочатку нагрівається до утворення пара, яка потім вводиться у пори шаблону й охолоджується до утворення твердого стану. З використанням спеціально сконструйованого обладнання майже монокристалічні нанодроти Ві були синтезовані в анодних алюмінієвих шаблонах з діаметрами пор ~7нм. Встановлено, що ці нанодроти Ві мають переважну орієнтацію росту кристалу вздовж осі дроту, аналогічно до нанодротів вісмуту, виготовлених інжекцією тиском. Змішані матеріали, які утворюються з двох реагуючих газів, були також виготовлені з використанням методу хімічного осадження з парової фази (CVD). Наприклад, монокристалічні нанодроти GaNбули синтезовані в анодних алюмінієвих шаблонах шляхом газової реакції пари Ga2Oз потоком аміаку. Інший підхід рідина/газ був використаний при виготовленні полікристалічних нанодротів GaAsта InAsв наноканальному склі. Тут наноканали заповнюються одним рідинним прекурсором (наприклад, Me3Gaабо Et3In) через капілярний ефект, і нанодроти формуються у шаблоні через реакції між рідким прекурсором та іншим газовим реагентом (наприклад, AsH3) [9].

1.5 Синтез нанодротів з використанням шаблонів і в якості шаблонів