Смекни!
smekni.com

Технологія синтезу нанодротів (стр. 3 из 4)

Нещодавно вуглецеві нанотрубки як важливий клас 1 — Dнаноструктур були виготовлені в порах анодних алюмінієвих шаблонів методом хімічного осадження з парової фази для формування високовпорядкованих структур двовимірних вуглецевих нанотрубок. Спочатку електрохімічне наносилася на дно пор невелика кількість металевого каталізатору (наприклад, Co). Потім шаблони поміщали у пічі нагрівали до ~ 700 — 800°С з потоком газу, що складався із суміші N2 та ацетилену {С2Н2) або етилену (С2Н4), Молекули гідрокарбону піролізуються, утворюючи нанотрубки в порах шаблону за допомогою металевих каталізаторів. Добре впорядковані структури нанотрубок викликали великий інтерес завдяки перспективі їх застосування, наприклад, в якості плоских панельних дисплеїв з холодним катодом. Цікавим також є використання цеолітових шаблонів з дуже вузькими порами (< 1 нм у діаметрі), що дозволяє вирощувати вуглецеві нанотрубки діаметрами 0.42 нм, оточені тільки 10 атомамим вуглецю.

Порожні серцевини вуглецевих нанотрубок також застосовувалися дня синтезу різноманітних нанодротів дуже матого діаметру. Такі нанодроти інтенсивно вивчалися методом високороздільної ПЕМ (електронною мікроскопією на пропускання), але їх фізичні властивості ще слабо вивчені [7].


1.6 Методика вирощування кремнієвий нанодротів

Безперервний прогрес в характеристиках різних електронних пристроїв – від персональних комп'ютерів до мобільних телефонів – в значній мірі обумовлений постійним зменшенням розмірів кремнієвих мікросхем. Для їх серійного виробництва добре відладжена 0.1-мікронна технологія. Але подальша мініатюризація електронних компонентів до масштабу 10нм вимагає заміни кристалів кремнію іншими фізичними об'єктами. Як такі зараз обговорюються, наприклад, вуглецеві нанотрубки, молекулярні перемикачі і кремнієві нанодроти. Про останніх і піде мова нижче.

Методика вирощування кремнієвих нанодротів полягає в наступному. На підкладку з кремнію наносять маленьку краплю рідкого металу (як правило, золото). Ця крапля так ефективно адсорбує Siз пари SiH4або Si2H6, що стає пересиченою кремнієм, внаслідок чого з краплі росте довгий і круглий монокристалічний нанодріт Si, діаметр якого визначається розмірами краплі Au (див. рис. 1.5). До цих пір вважали, що якщо на підкладку нанести відразу декілька крапель Au, то одночасно вийде відповідна кількість нанопроводів Si.

Рис.1.5. Ілюстрація росту нанодротуSiз використанням капель Auв якості каталізатора.


Тому дана методика розглядалася як вельми перспективна для широкомасштабного виготовлення таких нанодротів з метою їх практичного використання в наноелектроніці. Проте проведені в IBMдослідження показали, що це не так [5].

За даними ІВМ процес зростання паралельних один одному нанопроводів Siна підкладці з Si (111) вивчений з використанням скануючого тунельного мікроскопа. Всупереч очікуванням, авторам не вдалося виростити відразу багато довгих однорідних по діаметру нанопроводів. Причина цього полягає в тому, що неминучі, нехай навіть і зовсім незначні відмінності в розмірах крапель Auприводять зрештою до того, що атоми Auдифундують з менших крапель на великі, внаслідок чого зростання нанопроводів, що залишилися без "золотого даху", припиняється (див. рис. 1.5). Цей ефект, званий ефектом Оствальда (лауреат Нобелівської премії по хімії в 1909 році) або, – жартома – "капіталістичним принципом", пояснюється зменшенням повної поверхневої енергії при дифузії Auз краплі на краплю. Науковці спостерігали і інші шкідливі наслідки дифузії Au, зокрема зміну діаметру кожного нанодроту уздовж його довжини [4].

Вихід з цієї ситуації запропонований пізніше вчним У. Джозеле: не потрібно гнатися за ідеальними умовами синтезу (надвисокий вакуум і так далі), як це робили вчені з ІВМ, а просто допустити присутність в атмосфері незначної кількості кисню. Це дозволить блокувати шляхи дифузії Au по поверхні підкладки. Тоді краплі Auвиявляться незалежними один від одного, і вийде великий масив довгих однорідних нанопроводів Si. Таким чином, виявляється, що "дуже чисто" – це іноді навіть "занадто чисто".

1.7 Секрети ПРК-росту кремнієвих нанопроволок

Синтез напівпровідникових нанодротів по механізму пара-рідина-кристал (ПРК) є одним з основних способів отримання монокристалічних нановолосків, які потім використовуються для побудови різних пристроїв в рамках технологічного напряму "знизу-вгору" ("bottom-up"). У переважній більшості робіт процеси зростання нанодротів і дослідження синтезованого продукту рознесені у просторі та часі, що істотно обмежує можливість отримання надійної кількісної інформації про ПРК механізмі, а деякі важливі деталі можуть взагалі залишитися непоміченими. Тому винятковий інтерес представляють методики, що дозволяють вести спостереження за формуванням нанодротів безпосередньо в процесі їх зростання. Саме такий підхід був реалізований в недавніх роботах групи учених з дослідницького центру IBM (YorktownHeights). Вивчали класичну систему Si-Au, а вирощування нанопроволок проводили в надвисоковакуумному електронному мікроскопі (HitachiUHVH-9000), що просвічує, або в камері мікроскопа на повільних електронах (LEEM) шляхом експозиції підкладки Si(111) з двома моношарами золота в суміші дисилан (20%) -гелій (80%) при тиску 5х10-4Торр і температурі 600оС [7].

Спостереження в LEEMпоказали, що нагріваючи плівки Auдо 600оС приводить до утворення ансамблю різнорозмірних нанокрапель, а поверхня між краплями володіє надструктурою, характерною для грані Si(111) з одним моношаром золота. Опинилося далі, що при даній температурі атоми Auшвидко мігрують по такій поверхні з малих крапель в більші і цей процес (так зване "оствальдовское дозрівання") відбувається за 2-3 хвилини. Аналогічну надструктуру спостерігали і на поверхні підкладки між нанодротами, що ростуть. Тому резонно припустити, що і бічна поверхня нанодротів покрита приблизно одним моношаром Au. Але якщо це так, то у міру зростання дротів розмір краплі на її вершині повинен зменшуватися, оскільки атоми витрачаються на "золочення" бічної поверхні. При цьому діаметр дроту безперервно убуватиме аж до повного припинення зростання, коли витратилося все золото з краплі. Ясно також, що чим менше діаметр початкової краплі, тим раніше це відбудеться. Вказаний ефект виразно спостерігався в експериментах американських фізиків. Що виросли дроту були не циліндровими, а конусоподібними, причому найтонші (у підстави) конуси мали меншу висоту і краплі на їх вершинах відсутні. Таким чином, скільки завгодно довгий нанодріт з краплі даного розміру виростити неможливо.

Рис. 1.6. Фотографія нанодроту кремнію з золотою шапочкою

Але найчудовіший ефект полягає в тому, що атоми золота здатні мігрувати з малих крапель в більші не тільки по плоскій поверхні підкладки (до зростання), але і з вершини одного нанодроту на вершину іншого (розташованою поряд) безпосередньо при зростанні! Результатом такого перетікання є формування пари нанопроволок з протилежною конусністю (рис.1.6, масштабні штрихи - 1мкм). Експерименти insitu в електронному мікроскопі дозволили детально досліджувати кінетику процесу - три знімки на рис. 3 показують зменшення розміру краплі "В" при одночасному збільшенні краплі "А" на сусідньому нанодроті (цифри – час зростання в секундах, масштабний штрих – 50нм). При цьому було встановлено, що швидкість аксіального росту конусовидного нанодроту не залежить від розміру краплі (не рахуючи останньої ділянки швидкого скруглення). Автори пов'язують це з тим, що в їх експериментах лімітуючою стадією є необоротне розкладання молекули дисилану на поверхні рідкої евтектичної краплі [8].


Рис. 1.7. Знімки електронного мікроскопа нанодротів в процесі росту

Отже, епітаксіальне ПРК-ріст кремнієвих нанодротів в дуже чистих умовах натрапляє на фундаментальні обмеження, обумовлені високою міграційною здатністю атомів Au. Разом з тим відомо, що при звичайній газофазній епітаксії дроту ростуть циліндровими, а золото на їх бічних поверхнях відсутнє. Мабуть, навіть невеликі кількостей кисню в ростовій атмосфері достатньо, щоб ефективно блокувати пересування атомів золота по поверхні. Виходить, що для успішного синтезу нанопроволок технологічна система повинна бути чистою, але не занадто [9].

1.8 Нанодроти триоксиду вольфраму

Надкритичні флюїди володіють рядом цікавих особливостей. Вони відмінні розчинники, мають низьку в'язкість, високу теплоємність, високі швидкості перенесення і високий осмотичний тиск. Крім того, їх фізичні властивості можуть бути легко змінені за допомогою варіювання температури і тиску. Найчастіше як надкритичний флюїд застосовується CO2, який нетоксичний, безпечний і порівняно легко переходить в надкритичний стан.


Рис. 1.7. Нанодроти WO3 при різному збільшенні. Довжина мітки (a) 500 нм, (b) 200нм, (c) 50 нм, (d, e) 20 нм.

Японські дослідники об'єднали методи синтезу в плазмі і надкритичних розчинах в один і змогли отримати одновимірні нанодроти оксиду вольфраму, покриті аморфним вуглецем.

У осередок, де відбувається утворення надкритичного розчину, були поміщені вольфрамові електроди, до яких було прикладено високочастотну змінну напругу. При атмосферному тиску з вуглекислого газу утворювалася плазма, після чого в осередку створювався великий тиск і вводилася деяка кількість толуолу. Автори відзначають, що безпосередньо в надкритичному стані плазму отримати досить проблематично [12].