- вторая (на оси Id – точка КЗ): Id=1954 А, Ud=0 В.
Для a=45º координаты точек, по которым будет построена прямая: режим 3 заканчивается, когда g¹60º. При этом условии ток:
(4.10)Напряжение Ud=13,07 В нашли по формуле (4.8). Вторая точка находится на оси Id, поэтому Ud=0. Ток в относительных единицах:
. (4.11)По формуле (4.2) нашли значение Id=1887,56 А.
По основе данных пунктов 4.2-4.4, включающих табл.4.1-4.2, построили семейство внешних характеристик выпрямителя, которое изображено на рис.4.1. Здесь А – граничная точка режимов 2-3 и 3; B – граничная точка режимов 3 и 3-4.
Графики кривых и постоянной составляющих выпрямленного напряжения представлены на рис. 4.2.
Семейство внешних характеристик выпрямителя.
Рис4.1.График кривых и постоянной составляющих выпрямленного напряжения.
Рис. 4.2.
5. Расчет сглаживающего фильтра выпрямителя при активной нагрузке
Первой гармоникой источника питания является гармоника напряжения питания при f(1)=50 Гц. Частота основной гармоники выпрямленного напряжения в 6 раз больше: f(6).
Для сглаживания пульсаций выпрямленного напряжения будем использовать индуктивно-емкостной фильтр с последовательным включением выпрямительного моста и дросселей фильтра, и параллельным включением конденсатора нагрузки (рис.2.2).
5.1.1 Рассчитали коэффициент пульсации на выходе выпрямителя (на входе сглаживающего фильтра):
; (5.1) ; (5.2) . (5.3)5.1.2 Коэффициент пульсации на выходе согласно заданию Кп(6)=0,024%. Дальнейший расчет проведем по 6-ой гармонике.
5.1.3 Рассчитали минимальную индуктивность сглаживающего фильтра:
Гн. (5.4)где m=6 – номер гармоники выпрямленного напряжения;
w – круговая частота:
w=2·p·f=2·3,14·50=314 с-1, (5.5)
где f=50 Гц – частота сети.
Приняли Lф=2 мкГн.
5.1.4 Определили коэффициент фильтрации:
, (5.6)где КП=0,024 % – коэффициент пульсаций, согласно заданию.
5.1.5 Нашли емкость конденсатора фильтра:
27,597 Ф. (5.7)5.1.6 Корректировка величин индуктивности и емкости фильтра.
Величина емкости слишком большая, поэтому выбрали емкость конденсатора фильтра Сф=51×10-3 Ф. Пересчитали индуктивность сглаживающего дросселя:
Гн. (5.8)Определили индуктивность дросселей:
Гн. (5.9)5.1.7 Амплитуда основной гармоники тока:
(5.10)5.1.8 Выбор типа конденсатора.
В качестве конденсатора С7 (рис.2.2) сглаживающего фильтра выбрали из справочника [3] конденсатор К50-18 емкостью 51 мФ (согласно ряда Е24) и номинальным напряжением Uном= 82 В.
5.2 Расчет сглаживающего дросселя
Сглаживающий дроссель предназначен для уменьшения пульсаций выпрямленного тока. По обмотке дросселя протекают переменная и постоянная составляющие выпрямленного тока. Постоянная составляющая создает поток вынужденного намагничивания сердечника дросселя. Индуктивность дросселя зависит от величины этого магнитного потока. Чтобы ослабить эту зависимость, в сердечнике делают немагнитные зазоры (рис. 5.1). Для расчета сглаживающего дросселя предварительно задались следующими параметрами:
- коэффициент заполнения окна магнитопровода: Kм=0,25;
- коэффициент, характеризующий отношение высоты окна магнитопровода к ширине окна: K1=b/a=4;
-
- плотность тока в обмотке: jd=3·106 А/м2;
- число витков обмотки дросселя: W=25;
- относительная динамическая магнитная проницаемость стали: m*=700.
5.2.1Длина немагнитного зазора:
16,3 мм. (5.11)5.2.2 Площадь поперечного сечения:
. (5.12)5.2.3 Размеры сечения окна магнитопровода:
0,082 м = 82 мм; (5.13)b=4·a=4·0,082=0,328 м; (5.14)
5.2.4 Размеры сечения сердечника:
0,188 м = 188 мм. (5.15)5.2.5 Сечение меди в проводе:
м2. (5.16)5.2.6 Средняя длина витка обмотки:
1,439 м. (5.17)5.2.7 Активное сопротивление обмотки:
2,564·10-3 Ом. (5.18)5.2.8 Падение напряжения на активном сопротивлении обмотки:
DUа=2·Id·R=2·800·2,564·10-3=4,102 В. (5.19)
5.2.9 Потери в меди обмотки дросселя:
DP=Id·DUа =800·4,102 = 1,641кВт (5.20)
5.3 Тепловой расчет сглаживающего дросселя
В связи с большим током дросселя приняли водяное охлаждение.
5.3.1 Количество охлаждающей воды для одного дросселя:
1,313·10-5 м3/с, (5.21)где Т2 – температура воды на выходе; приняли Т2=50 ºС;
Т1 – температура воды на входе; приняли Т1=20 ºС.
5.3.2 Площадь сечения отверстия охлаждающей трубки:
6,564·10-6 м2 (5.22)где v – скорость потока воды; приняли v=2 м/с.
Выбрали трубки с прямоугольным отверстием, имеющую размеры 0,37´0,24 см2.
5.3.3 Проверка на турбулентность
Гидравлический эквивалент диаметра:
2,574·10-3 м, (5.23)где F – периметр трубки.
Рассчитали критерий Рейнольдса:
7800, (5.24)где m* - кинематическая вязкость воды при средней температуре
Тср=(Т1+Т2)/2=35 ºС.
Так как Re=7800>2300, то движение воды турбулентное.
5.3.4 Коэффициент сопротивления шероховатости:
0,092, (5.25)где k=3 – коэффициент шероховатости.
5.3.5 Длина трубки одного дросселя:
l=lср.в·W=1,439·25=35,986м. (5.26)
5.3.6 Перепад давления:
3,774·106 Н/м2 (5.27)5.3.7 Рассчитали превышение температуры по формуле:
(5.28)Повышение температуры ts=tc+t=20+25=45° составляет меньше допустимой температуры класса изоляции «А»: t=105°С, что соответствует требованиям эксплуатации.
6. Электромагнитный расчет трансформатора
6.1 Основные электрические параметры трансформатора были рассчитаны в п.п. 3.1.6 и 3.1.9-3.1.16 (полная мощность S, действующие значения фазных токов первичных I1 и вторичных обмоток I2 и т.д.).
Выбрали двухобмоточный трансформатор с плоской магнитной системой стержневого типа со стержнями, имеющими сечение в форме симметричной ступенчатой фигуры, вписанной в окружность, и с концентрическим расположением обмоток. Магнитная система такого трехфазного трансформатора с обмотками.
В качестве магнитной системы выбираем трёхфазную шихтованную магнитную систему, схематически изображенную на рис.6.1, из холоднокатаной стали марки 3404 толщиной 0.35 мм. Провод обмотки сделан из алюминия. Обмотки соединены по схеме ''звезда-звезда''.
6.2 По табл. 1.9 [4] определили потери и напряжение короткого замыкания для рассчитанной полной мощности трансформатора (S=46,32 кВ×А). Получили PК= 2000 Вт, UК%= 5 %. Рассчитали реактивную составляющую напряжения короткого замыкания по формуле:
(6.1)6.3 По табл.2.2 [4] определили коэффициент заполнения kЗ, по табл. 2.4 [4] определили индукцию в стержнях трансформатора B, по табл.2.5 [4] определили коэффициент заполнения площади круга kКР, по табл.3.3 [4] определили коэффициент приведённой ширины k, по табл.3.12 [4] определили значение коэффициента β, по табл.4.5 [4] определили минимальное изоляционное расстояние a12.