Тольяттинский Государственный Университет
Пояснительная записка
к курсовому проекту
«Трёхфазный мостовой преобразователь»
Студент: Моторин С.К.
Группа: Э - 406
Преподаватель: Бар В.И.
Тольятти 2003
Содержание
Введение
1. Анализ состояния, перспектив проектирования и разработки статических преобразователей средней мощности
2. Разработка структурной и принципиальной схем преобразователя
3. Расчёт токов и напряжений.
4. Расчёт семейства внешних характеристик
5. Расчёт сглаживающего фильтра выпрямителя при активной нагрузке. Выбор емкостей. Расчет сглаживающего дросселя
6. Электромагнитный расчет трансформатора
7. Выбор и расчет устройств защиты от аварийных токов и перенапряжений
8. Описание работы схемы управления
Заключение
Литература
Введение
В настоящее время в промышленных устройствах очень часто возникает необходимость получения постоянного тока из переменного тока. Данную функцию выполняют выпрямители. Выпрямителем называют устройство, предназначенное для преобразования энергии источника переменного тока в постоянный ток.
Целью настоящей работы является расчёт трехфазного управляемого выпрямителя, преобразующего входное напряжение до необходимой выходной величины с заданным коэффициентом пульсаций и величиной выходного тока, за счёт использования трансформатора напряжения, соответствующей вентильной выпрямительной схемы, фильтра гармонических составляющих выходного напряжения и системы защиты от перегрузок и коротких замыканий.
1. Анализ состояния, перспектив проектирования и разработки статических преобразователей средней мощности
На сегодняшний день существуют различные выпрямительные схемы статических преобразователей мощности. Разделение в основном идет на однофазные и трехфазные выпрямители, а также на неуправляемые и управляемые.
Неуправляемые выпрямители строятся на основе полупроводниковых диодов. Данные устройства не позволяют регулировать мощность, выделяемую в нагрузке. Управляемые выпрямители в качестве вентилей используют тиристоры. Применение данных полупроводниковых приборов позволяет регулировать мощность, выделяемую в нагрузке.
Трехфазные выпрямители используются при средних и больших мощностях. Применение трехфазных выпрямителей позволяет создать равномерную нагрузку на все три фазы сети; уменьшить пульсации выпрямленного напряжения; уменьшить расчетную мощность трансформатора, а также повысить коэффициент мощности.
Схема трехфазного однополупериодного выпрямителя (схема Миткевича) изображена на рис. 1.1. Она обладает невысокими энергетическими характеристиками. Частота пульсаций выпрямленного напряжения в три раза больше частоты питающего напряжения; установленная мощность трансформатора должна быть на 35% больше мощности в нагрузке, что значительно увеличивает его габариты; стержни магнитопровода трансформатора подмагничиваются в процессе работы выпрямителя. Наибольшее распространение получила схема трехфазного двухполупериодного мостового выпрямителя, представленная на рис. 1.2 (схема Ларионова). Данная схема обладает лучшими энергетическими показателями: частота пульсаций выпрямленного напряжения в шесть раз больше частоты питающего напряжения, что значительно снижает массогабаритные и стоимостные показатели фильтрующих устройств; установленная мощность трансформатора всего на 5% больше мощности в нагрузке; отсутствует подмагничивание стержней магнитопровода
В табл. 1.1 приведены сравнительные характеристики выпрямителей различных типов, где: q0 - коэффициент пульсаций, Ia - среднее значение тока вентиля, Id - среднее значение выходного тока выпрямителя, Uобр - амплитуда обратного напряжения на вентилях, Ud - среднее значение выходного напряжения выпрямителя, ST- расчётная мощность трансформатора, Pd - значение мощности на нагрузке, N – минимальное число вентилей, m – пульсность напряжения.
Основные характеристики выпрямителей
Тип выпрямителя | m | N | ||||
Однофазный нулевой | 2 | 2 | 0.67 | 0.50 | 3.14 | 1.34 |
Однофазный мостовой | 2 | 4 | 0.67 | 0.50 | 1.57 | 1.11 |
Трёхфазный нулевой | 3 | 3 | 0.25 | 0.33 | 2.09 | 1.34 |
Трёхфазный мостовой (схема Ларионова) | 6 | 6 | 0.06 | 0.33 | 1.05 | 1.05 |
Двойной трёхфазный с уравнительным реактором | 6 | 6 | 0.06 | 0.17 | 2.09 | 1.26 |
Таким образом, наибольшее применение нашла мостовая схема Ларионова, содержащая выпрямительный мост из шести вентилей.
2. Разработка структурной и принципиальной схем преобразователя
Основными элементами преобразователя являются трансформатор и вентили. Основное требование, предъявляемое к полупроводниковым преобразователям, в том числе и к выпрямителям - это надёжность, поэтому ввиду чувствительности приборов к перегрузкам, коротким замыканиям, перенапряжениям в схеме необходимо предусмотреть быстродействующие системы защиты. Необходимо выдерживать заданные параметры на выходе преобразователя. Для этого в схему включаются фильтры, датчики и системы сравнения выходных параметров преобразователей с заданными, и управления полупроводниковыми приборами. Согласно вышесказанному, составили структурную (рис. 2.1.) и принципиальную (рис. 2.2.) схемы полупроводникового выпрямителя.
3. Расчет токов и напряжений
3.1. Расчет токов и напряжений выпрямителя.
3.1.1 Выбрали минимальное значение угла управления aмин=10º.
3.1.2Определили номинальное и максимальное значения угла управления:
aном=arccos(K1·cos aмин)=arccos(0,9·cos 10º)=27,585º (3.1)
aмакс=arccos(K1·
)=arccos(0,9· )=36,317º (3.2)где
0,9; (3.3) 1,1; (3.4)где Uc=220 В – напряжение сети, из задания;
DUс=22 В – колебание напряжения сети 10%, из задания.
3.1.4 Рассчитали среднее значение выпрямленного тока в относительных единицах:
0,409.(3.5)3.1.5 Вычислили значение выпрямленного напряжения холостого хода (ЭДС выпрямителя):
58,462 В, (3.6)где Uн=32 В – напряжение на нагрузке из задания;
DUd – суммарное падение напряжения на активном сопротивлении обмотки дросселя и активном сопротивлении тиристора; предварительно приняли DUd=6 В.
3.1.6 Определили амплитудное значение фазной ЭДС на вторичной обмотке трансформатора (соединение обмоток «звезда-звезда»):
35,346 В. (3.7)3.1.7 Рассчитали индуктивное сопротивление вторичной обмотки трансформатора и угол коммутации:
0,018 Ом, (3.8)где Id=Iн=800 А – номинальное значение выпрямленного тока;
(3.9)Повторили вычисления по пунктам 3.1.3 - 3.1.7 для значений
=0,8; 0,75; 0,7; 0,60; 0,55; 0,50. Все полученные результаты занесли в табл.3.1.aном, ° | , В | , В | xg, Ом | gном, ° | Idкз,А | S, В×А | ||
33,166 | 0,8 | 0,150 | 47,5 | 28,718 | 0,005 | 16,881 | 5350 | 38850 |
0,75 | 0,236 | 50,667 | 30,633 | 0,009 | 24,560 | 3388 | 40970 | |
0,70 | 0,323 | 54,286 | 32,821 | 0,013 | 31,506 | 2479 | 43440 | |
0,65 | 0,409 | 58,462 | 35,346 | 0,018 | 37,979 | 1954 | 46420 | |
0,60 | 0,496 | 63,333 | 38,281 | 0,024 | 44,135 | 1613 | 49700 | |
0,55 | 0,583 | 69,091 | 41,772 | 0,030 | 50,078 | 1373 | 53710 | |
0,50 | 0,696 | 76 | 45,95 | 0,038 | 55,888 | 1196 | 58520 |
По результатам расчетов таблицы 3.1, сделали следующие выводы: для уменьшения тока короткого замыкания Id.кз и уменьшения полной мощности трансформатора S, приняли значение выпрямленного напряжения в относительных единицах равным
=0,65. Дальнейший расчет ведется для выбранных параметров.