Смекни!
smekni.com

Трьох- і чотирьох хвильове розсіяння світла на поляритонах в кристалах ніобіту літію з домішками (стр. 1 из 6)

Донбаський Державний Технічний Університет

Кафедра електромеханіки

Трьох- і чотирьох хвильове розсіяння світла на поляритонах в кристалах ніобіту літію з домішками


Зміст

Введення

Розділ 1. Розсіяння світла на рівноважних поляритонах

§1 Розсіяння світла в однорідних кристалах

1.1 Дисперсійна крива кристала

1.2. Інтенсивність СПР і симетрія кристала LiNbO3

§2. Розсіяння світла на поляритонах в умовах нелінійній дифракції

§3. Експериментальна установка для спостереження СПР

Розділ 2. Дослідження характеристик однорідних і шаруватих кристалів ніобіту літію з різним змістом домішок методом спектроскопії СПР

§1. Зразки кристалів LiNbO3

§2 Показники заломлення кристалів у видимому і інфрачервоному діапазоні спектру випромінювання

2.1 Дисперсія у видимій і ближній ГИК області спектру

2.2 Дисперсія в поляритонной області спектру

§3. СПР в моно- і полидоменных кристалах

§4. Товщина шаруючи в полидоменномLiNbO3

Розділ 3. Чотирьох фотонне розсіяння світла на поляритонах

§1. Огляд ефектів в нецентросиметричних середовищах

§2. Пряма чотирьох фотонна взаємодія

§3. Каскадні трьох хвилеві процеси

§4. Експериментальна установка для спостереження чотирьох фотонного розсіяння світла на поляритонах

Розділ 4. Дослідження характеристик кристалів методом активної спектроскопії

Висновок

Література


Введення

Завданням даної роботи є дослідження розсіяння світла на рівноважних і порушуваних поляритонних поляганнях в кристалах. До таких типів розсіяння відноситься спонтанне параметричне розсіяння (СПР) і деякі різновиди чотирьох фотонного розсіяння. Кінцевою метою є розробка методики визначення оптичних характеристик кристалів з різною структурою методом активної спектроскопії. Зразками для дослідження служать кристали ніобіту літію. У свою чергу, серед них виділяються три групи: просторово-однорідні кристали, але з різним змістом домішки (використовуються кристали з домішкою магнію і неодиму), неоднорідні моно доменні середовища і неоднорідні полідоменні середовища з регулярними шарами зростання, які можуть використовуватися для квазісинхронного перетворення лазерного випромінювання.

Для вивчення цих трьох груп кристалів використовується спонтанне параметричне розсіяння (СПР) і розсіяння світла на поляритонах (РСП) [1]. C допомогою цього методу можна виявити явища, що не виявляються в спектрах комбінаційного розсіяння світла на фононах. Це відбувається в тих достатньо поширених випадках, коли частоти фононів залишаються практично незмінними, а міняються тільки сили осциляторів або константи загасання фононів. При цьому істотним чином змінюється і закон дисперсії полярітонних станів. У даній роботі отримані спектри спонтанного розсіяння однорідних кристалів ніобіту літію з різною концентрацією домішки магнію, зміряні показники заломлення у видимій і інфрачервоній області спектру. Потім були досліджені кристали з шарами зростання, деякі з яких мають регулярну доменну структуру. У полідоменних кристалах параметричне розсіяння за наявності нелінійної дифракції несе в собі інформацію не тільки про дисперсійні характеристики середовища (залежності середніх значень показників заломлення і поглинання, квадратичній сприйнятливості як від частот так і від поляризації накачування, сигнальної і полярітонної хвиль); але і про характеристики періодичної доменної структури (просторового розподілу оптичних властивостей).

Також розглядаються два процеси активної спектроскопії: прямі чотирьохфотонні процеси і каскадні трьохфотонні процеси, пов'язані з нелінійними сприйнятливостями (3)c і (2)c відповідно. Перші роботи в даній області були початі ще в кінці 60-х років [2]. Ця частина дослідження представляє найбільший інтерес, оскільки спектроскопія нерівноважних станів здатна дати значно більше інформації на відміну від інших методів, які мають набагато меншу величину корисного сигналу на виході з досліджуваного об'єкту. Досліджені особливості чотирьох хвилевих процесів розсіяння світла на поляритонах для створення оптимальної спектроскопічної схеми, що дозволяє проводити вимірювання дисперсії поляритонов. Далі результати чотирьох хвилевої методики порівнюються з дисперсією поляритонних станів, отриманою по спектрах трьох хвилевого розсіяння світла на поляритонах.


Розділ 1. Розсіяння світла на рівноважних поляритонах

§1 Розсіяння світла в однорідних кристалах

Параметричним розсіянням світла є процес спонтанного розпаду фотонів накачування (wL, kL) в кристалі з відмінною від нуля квадратичною сприйнятливістю на сигнальний (wS, kS) і неодружений фотони (wP, kP), або фотон і поляритон. Хвилеві вектори і частоти при стоксовом розсіянні задовольняють наступним умовам :

, (1)

які є законами збереження імпульсу і енергії. Частоти власних механічних коливань кристалічної решітки мають той же порядок коливань, що і частоти інфрачервоних електромагнітних хвиль: від 1011 до 1013 Гц (10-3000 см-1 ). За певних умов можлива пряма взаємодія оптичних коливань грат з інфрачервоними електромагнітними хвилями, тобто існування поляритоних хвиль.

1.1 Дисперсійна крива кристала

Основні риси частотно-кутового спектру СПР визначаються дисперсійній кривій (k) wкристала. Дисперсійне співвідношення кубічного (неанізотропного) кристала в гармонійному наближенні в одно резонансном випадку має вигляд:

, (2)

де e

- діелектрична проникність середовища на частотах багато великих фундаментальних частот кристалічної решітки, але багато менших частот електронних переходів, f=0-e
- сила осцилятора, w0 - фундаментальна частота оптичного коливання грат. На рис.1 приведена дисперсійна крива відповідна рівнянню (2). Якби поперечні механічні коливання і електромагнітні хвилі були незалежні, то перші описувалися би прямими.

Мал.1 Дисперсія кубічного кристала

Мал.2 Дисперсія анізотропного кристала

(k)=wTO і (k)=wLO,

а другі - прямій


w=

.

Взаємодія, що запізнюється, між цими коливаннями в кристалі приводить до поляритонным збуджень, що мають змішану електромеханічну природу. На частотах, великих wLOзнаходитися верхня поляритонная гілка. На частотах між wTOі wLOзнаходиться заборонена зона, де середовище не прозоре для об'ємних хвиль.

У анізотропних одноосних кристалах частотам поперечних і подовжніх коливань wТ і wL відповідають частоти коливань, зсуви яких паралельні (wеТ; еL) і перпендикулярні (оТ; wоL) оптичній осі. На рис.2 зображені дисперсійні криві, відповідні злучаю, коли вектор

перпендикулярний головній оптичній осі кристала.

1.2 Інтенсивність СПР і симетрія кристала LiNbO3

Вперше питання про інтенсивність СПР розглядалося в роботі [3]. Коли поляритонна частота p wдалека від частоти фонона, досить розглядати квадратичну нелінійну сприйнятливість (2).c Розглядатимемо накачування, як плоску монохроматичну хвилю з інтенсивністю SL і припустимо, що кути розсіяння p,sqна частотах pw, s wмалі, так що

де А - перетин розсіюючого об'єму V, l - довжина кристала. Тоді потужність, що розсіюється на частоті ws в напрямі

у одиничний спектральний і кутовий інтервали, рівна[4]:

(3)

де

- згортка тензора (2)c і ортов поляризації відповідних хвиль, ns,p,L - показники заломлення на відповідних частотах, а

-

форм-фактор, що описує частотно-кутову структуру СПР, коли середовище прозоре на всіх трьох частотах. У останньому виразі введено позначення

,.где
-

настроєння хвилевого вектора поляритону від точного синхронізму.

Тензор квадратичної сприйнятливості (2)c однорідних кристалів ніобіту літію, що використалися в даній роботі, має вигляд [5]:

, (4)

причому cxxy=-2yyyc, cyxx=-yyy, cyyz=xxz, zyy=zxx. Кристалофізичні осі орієнтовані щодо елементів симетрії таким чином: вісь Z співпадає з оптичною віссю кристала, віссю симетрії третього порядку, вісь X перпендикулярна площині дзеркальної симетрії m, а вісь Y лежить в цій площині. Геометрії розсіяння, яка була реалізована в експерименті, відповідає схематичний запис X(Z,Y) X+Z. DТут послідовність індексів задає напрями векторів

відповідно. Останній вираз X+ZDвизначає площина розсіяння, яка, у свою чергу, задається орієнтацією вхідної щілини спектрографа (в даному випадку площина XZ). Відповідно до виду тензора нелінійної поляризуемости (4) константа нелінійної взаємодії рівна: