Смекни!
smekni.com

Электрификация животноводческой фермы крупного рогатого скота на 2700 голов ЗАО "Агрофирма Луговская" Тюменского района Тюменской области с разработкой системы горячего и холодного водоснабж (стр. 4 из 12)

Суммарная нагрузка осветительной сети.

РΣ=ΣРл. н. +1,2ΣРл. л. =3380+1,2·10160=15,5кВт (3.11)

где, ΣРл. н. - суммарная мощность ламп накаливания

1,2ΣРл. л. - суммарная мощность люминесцентных ламп

ΣРлн=800+200+1200+280+200+400=3380Вт (3.12)

ΣРлл=10080+80=10160Вт (3.13)

Силовая сеть питается от трех осветительных щитов, схема компоновки осветительной сети приведена ниже.

Момент нагрузки между силовым и 1 осветительным щитом.

Мсщ-ощ=1,2 (РΣ) ·Lсщ-ощ=6·5=30 кВт·м (3.14)

ΣР - суммарная мощность люминесцентных ламп питающиеся от данного щита.

Lсщ-ощ - расстояние между силовым и 1 осветительным щитом

Расчетное сечение между щитами.

S=Мсщ-ощ/С·ΔU=30/50·0,2=3 мм (3.15)

где, С-коэффициент зависящий от напряжения и металла из которого состоит токоведущая жила (при U=380В и алюминиевой жилы С=50. ΔU-допустимая потеря напряжения между щитами, т.к согласно ПУЭ допустимая потеря напряжения составляет 2,5%, между щитами принимаем допустимую потерю 0,2%, а на группах 2,3%. Принимаем ближайшее наибольшее сечение, которое равняется 4мм² и по этому сечению, принимаем провод АПВ4-4мм². Ток на вводе в осветительный щит.

Iсщ-ощ=РΣ/U·cosφ=15,5/0,38·0,98=39,8А (3.16)

где, U-номинальное напряжение, В, cosφ-коэффициент мощности осветительной нагрузки.

Выбранный провод проверяем по допустимому нагреву. Согласно (л-5) допустимая токовая нагрузка на данное сечение составляет Iдоп=50А

Iсщ-ощ=20,4А<Iдоп=50А (3.17)

Окончательно принимаем четыре провода АПВ4-4мм²

Выбор сечения проводов на участках.

Момент нагрузки на каждой группе

М=Σ (Р·L) (3.18)

где, L-расстояние от осветительного щита до светового прибора.

Σ-сумма мощностей входящих в группу.

М1=1,2· (80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4+80·74,7=81,9 кВт·м

М2=1,2· (80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4=74,8 кВт·м

М3=1,2· (80·2,1+80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1) =68 кВт·м

Допустимая потеря напряжения на группах принята 2,3%

Сечение проводов на каждой группе

S=М/С·ΔU (3.19)

где, М - момент нагрузки на группе

Значение коэффициента С аналогично что и при выборе сечения провода между щитами, т.к питание осветительной нагрузки на группах осуществляется трехфазной четырехпроводной линией.

S1=81,9/50·2,3=0,7 мм² (3.20)

S2=74,8/50·2,3=0,6 мм² (3.21)

S3=68/50·2,3=0,59 мм² (3.22)

На группах принимаем 4 провода АПВ (2,5) прокладываемых в трубах с сечением токоведущей жилы 2,5 мм² выбранный провод проверяем по условию нагрева длительным расчетным током.

Допустимая токовая нагрузка на выбранное сечение составляет Iдоп=30 А.

Определяем токи на группах, токи на всех трех группах аналогичны друг другу и поэтому рассчитываем ток одной из групп.

I=Р/Uном·cosφ=6/0,38·0,8=20А (3.23)

Проверяем выбранный провод по условию

Iдоп=30А≥Iрасч=20А (3.24)

Условие выполняется, значит принимаем выбранный ранее провод.

Момент нагрузки между силовым и 2 осветительным щитом.

М=1,2 (ΣР) ·L=6·5,6=33,6 кВт·м (3.25)

Расчетное сечение.

S=М/С·ΔU=33,6/50·0,2=3,3 (3.26)

Принимаем 4 одножильных провода АПВ с сечением токоведущей жилы 4 мм², дальнейший расчет тока и проверка выбранного сечения аналогична что и при расчете 1 осветительного щита, т.к. они имеют одинаковые нагрузки, значит принятый провод принимаем окончательно. Моменты нагрузки на группах.


М1=1,2· (80·2,1+80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1=68 кВт·м

М2=1,2· (80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4=74,8 кВт·м

М3=1,2· (80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4+80·74,7) =81,9 кВт·м

Сечение проводов на каждой группе

S1=68/50·2,3=0,59 мм² (3.27), S2=74,8/50·2,3=0,6 мм² (3.28)

S3=81,9/50·2,3=0,7 мм² (3.107)

Значение С и ΔU аналогично что и при расчетах 1 осветительного щита.

Принимаем на группах 4 провода марки АПВ с одной жилой сечением 2,5 мм², дальнейший расчет токов на группах и проверка выбранного сечения по нагреву длительным расчетным током аналогично расчету на группах 1 осветительного щита, т.к они имеют одинаковые нагрузки на группах.

Момент нагрузки между силовым и 3 осветительным щитом.

Мсщ-3ощ= (1,2· (ΣР) +Р) ·Lсщ-ощ3= (1,2· (40) +3360) ·1=3,4 кВт·м (3.29)

где, 1,2· (ΣР) - суммарная мощность люминесцентных ламп

Р - суммарная мощность ламп накаливания

Расчетное сечение провода между щитами.

S=Мсщ-ощ3/С·ΔU=3,4/50·0,2=0,3 мм² (3.30)

Принимаем 4 одножильных провода АПВ с сечением токоведущей жилы 2,5 мм²

Расчетный ток на вводе в осветительный щит.

I=Р/μUн·cosφ=3,4/3·220·0,8=6,8 А (3.31

Проверка выбранного сечения по допустимому нагреву.

Iдоп=30А≥Iрасч=6,8 А (3.32)

Условие выполняется, значит провод выбран верно.

Моменты нагрузки на группах

М1=1,2· (40·1,2) + (40·3,1+300·3,1+40·3,1+200·3,9+200·5,9+40·7,9+300·7,9+200·9,4+200·11,4+200·12,4+40·11,4+40·11,4) =12,9кВт·м

М2=200·71+300·73,1+40·73,1+200·74,2+200·76,3+300·77,8+40·77,8+200·79,3=110,6кВт·м

Сечение проводов на каждой группе.

S1=12,9/50·2,3=0,1 мм² (3.33)

S2=110,6/50·2,3=0,9 мм² (3.34)

На всех группах принимаем провод АПВ4 (1·2,5), то есть четыре провода с сечением токоведущей жилы 2,5 мм² способ прокладки 4 провода в трубе.

Расчетный ток на группах.

I1=1980/3·220·0,98=3 А (3.35)

I2=1480/3·220·0,98=2,2 А (3.36)

Наибольший расчетный ток вышел в 1 группе и составил I1=3А, именно этот ток будем учитывать при проверке провода по допустимому нагреву длительным расчетным током.

Iдоп=30А≥Iрасч=3А (3.37)

Условие выполняется, значит принимаем выбранный ранее провод.

Для защиты осветительной сети от токов коротких замыканий, а также для распределения электроэнергии в осветительной сети принимаем 2 осветительных щита, серии ЯРН 8501-3813 ХЛЗБП с вводным автоматом серии ВА5131 с Iн=100А и 3 автоматами на отходящих линиях серии ВА1426 с Iн=32А. Выбранные щиты будут питать осветительную сеть стойлового помещения. Для питания осветительной сети остальных помещений принимаем аналогичный щит. В сумме выбрано три осветительных щита серии ЯРН 8501-3813 ХЛЗБП.

3.5.3 Расчет осветительных установок молочного блока

Молочный блок предназначен для сбора очистки и охлаждения молока, освещение играет немаловажную роль в технологическом процессе, от уровня освещенности зависит производительность и здоровье персонала.


Таблица 3.5. Характеристики здания.

Наименование помещения площадь ширина длина среда
Молочная 78,6 5,7 13,8 сыр.
Электрощитовая 10 2,4 4,2 сух
Лаборатория 5,67 2,1 2,7 сух
Моечная 5,13 1,9 2,7 сыр.
Комната персонала 16,8 4 4,2 сух
Уборная 1,35 0,9 1,5 сыр.
Вакуумнасосная 13,02 3,1 4,2 сух
Тамбур 7,6 1,9 4 сыр
Коридор 30,26 1,7 17,8 сыр

Высота помещений молочного блока Н=3м

3.5.3.1 Расчет мощности осветительной установки электрощитовой

Согласно (л-4) принимаем рабочее, общее равномерное освещение, нормированная освещенность составляет Ен=100Лк на вертикальной плоскости, на высоте 1,5м от пола стр.38 (л-4), т.к. помещение электрощитовой сухое то выбираем светильник ЛСП02 со степенью защиты IР20. Расчетная высота осветительной установки.

Нр=Н-Нс-Нр. п. =3-0-1,5=1,5м (3.38)

высоту свеса принимаем равной нулю, т.к подвесные кронштейны устанавливаться не будут.

Расчет мощности осветительной установки электрощитовой производим точечным методом, т.к в ней нормируется освещенность на вертикальной плоскости.

0,5·Нр=0,5·1,5=0,75<Lл=1,2

поэтому будем считать источник света линейный.

Расстояние от точки проекции светильника до контрольной точки в центре щита.

Р=в/2-Сщ=2,4/2-0,38=0,82м (3.118)

где, в - ширина помещения, м

Сщ - ширина щита, м

Расстояние от светильника до контрольной точки

dл=√Нр²+Р²=√1,5²+0,82²=1,7 (3.39)

Угол между вертикалью и линией силы света к контрольной точке.

γ=arctgР/Нр=arctg0,82/1,5=28º (3.40)

Угол под которым видна светящееся линия.

α=arctgLл/dа=arctg1,2/1,7=57,7º=1рад (3.41)

Условная освещенность в контрольной точке.

Еа=Iγ·cos²γ/2·Нр· (α+1/2sin2α) =135·cos²28º/2·1,5· (1+sin2·1/2) =48,3Лк (3.42)

где, Iγ=135кд сила света светильника в поперечной плоскости под углом γ=28º. Перейдем к вертикальной освещенности.

Еа. в. =Еа (cosΘ+Р/НрsinΘ) =48,3 (cos90º+0,82/1,5·sin90º) =26,4Лк (3.43)

где, Θ=90º-угол наклона поверхности.

Световой поток светильника.

Фс=1000·Ен·Кз·Нр/η·Еа. в. =1000·100·1,3·1,5/1·26,4=7386Лм (3.44)

где, η-коэффициент учитывающий дополнительную освещенность от удаленных светильников, т.к этих светильников нет то η=1

1000-световой поток условной лампы.

Световой поток одной лампы.

Фл=Фс/nс=7386/2=3693 (3.45)

Принимаем лампу ЛД-65 с Фк=4000Лм отклонение светового потока лампы, от расчетного потока находится в пределах -10%…+20%, и окончательно принимаем светильник ЛСП02 с 2 лампами ЛД-65

3.5.3.2 Расчет мощности осветительной установки молочной

Принимаем рабочее, общее равномерное освещение, нормированная освещенность составляет Ен=100Лк на высоте 0,8м от пола, т.к. помещение сырое то принимаем светильник ЛСП15 со степенью защиты IР54. Расчетная высота осветительной установки.

Нр=Н-Нс-Нр. п. =3-0-0,8=2,2м (3.46)

высота свеса равняется нулю, т.к крепежные кронштейны использоваться не будут.