L-требуемое количество воздуха, подаваемого вентилятором
Часовой воздухообмен по удалению излишней влаги.
Lи=1,1·W1/ (d2-d1) =1,1·28600/ (7,52-3,42) =5200 г/м³ (3.82)
где, W1-влага выделяемая животными внутри помещения
d2 - допустимое влагосодержание воздуха.
d1 - влагосодержание наружного воздуха
Влага выделяемая животными
W1=w·N=143·200=28600 г/ч (3.83)
где, w - влага выделяемая одним животным w=143 г/ч стр75 (л-1)
N-количество животных
Допустимое влагосодержание внутри помещения
d2=d2нас·φ2=9,4·0,8=7,52 г/м³ (3.84)
где, d2нас-влагосодержание насыщенного воздуха внутри помещения при оптимальной температуре +10ºС по табл.10.3 (л-2) d2нас=9,4 г/м³
φ-допустимая относительная влажность внутри помещения, по табл.10.2 (л-2) φ=0,8
Влагосодержание наружного воздуха.
d1=d1нас·φ=3,81·0,9=3,42 (3.85)
где, d1нас-влагосодержание насыщенного наружного воздуха
φ-относительная влажность наружного воздуха.
Т. к. сведений значений расчетной температуры и относительной влажности наружного воздуха нет то ориентировочно расчетную температуру наружного воздуха можно принять равной - 3ºС и при такой температуре d1нас=3,81 φ=0.9
Давление вентилятора.
Р=Рд+Рс=105,6+1154,9=1260,5 Па (3.86)
где, Рд и Рс - динамические и статические составляющие давления вентилятора.
Динамическая составляющая давления
Рд=ρ·V²/2=1,25·13²/2=105,6 кг/м³ (3.87)
где, ρ-плотность воздуха
V-скорость воздуха, м/с V=10…15м/с (л-1)
Определяем плотность воздуха.
ρ=ρ0/ (1+α·U) =1,29/ (1+0,003·10) =1,25кг/м³ (3.88)
где, ρ0-плотность воздуха при 0ºС ρ0=1,29 кг/м³ стр34 [л-1]
U-температура воздуха
α - коэффициент учитывающий относительное увеличение объема воздуха при нагревание его на один градус α=0,003 стр.35 [л-1]
Статическая составляющая давления.
Рс=l·h+Рм=66,8·1.8+1035,1=1154,9 Па (3.89)
где, Lh-потеря давления, затрачиваемое на преодоление трения частиц воздуха о стенки трубопровода.
l-длина трубопроводов, равная 66,6м
h-потери давления на 1 метр трубопровода, Па/м
Рм - потери давления затрачиваемое на преодоление местных сопротивлений.
Потери напора на 1 метре трубопровода.
h=64,8·V ·/d · (ρ/1,29) =64,8·13· /750 · (1,25/1,29) =1,8 Па/м (3.90)
где, V-скорость воздуха в трубопроводе, м/с
d-диаметр трубопровода
d=2·а·в/ (а+в) =2·1000·600/ (1000+600) =750 мм (3.91)
где, а и в стороны прямоугольного сечения трубопровода а=1000мм в=600мм (л-5). Потери напора в местных сопротивлениях.
Рм=Σξ·Рд=Σξ·ρ·U²/2=9,8·1,25·13²/2=1035 Па/м (3.92)
где, ξ-коэффициент местного сопротивления, Σξ=9,8 стр.75 (л-2)
Вентилятор подбираем по их аэродинамическим характеристикам. По наибольшему значению L и расчетному значению Р.
С учетом равномерного распределения вентиляторов в коровнике выбираем вентилятор Ц4-70 с подачей L=6000 м³/ч, при давлении 630 Па.
Ц4-70 N5 n=1350 об/мин η=0,8
Определяем число вентиляторов.
n=L/Lв=12000/6000=2 (3.93)
где, Lв - подача воздуха одним вентилятором.
Принимаем 2 вентилятора один из которых будет располагаться в начале здания другой в конце здания.
Масса воздуха проходящего через вентилятор.
m1=ρ·S·V=1,29·0,6·13=10 кг/с (3.94)
где, ρ-плотность наружного воздуха, ρ=1,29кг/м³ стр45 (л-1)
S-площадь сечения трубопроводов S=0,6м² стр45 (л-2)
Полезная мощность вентилятора.
Рпол=m1·V²/2=10·13²/2=845Вт (3.95)
Мощность электродвигателя для вентилятора.
Р=Q·Р/1000·ηв·ηп=1,6·630/1000·0,8·0,95=1,3 кВт (3.96)
где, Q-подача вентилятора Q=1,6м³
Р - давление создаваемое вентилятором Р=630Па
ηв-КПД вентилятора ηв=0,8
ηп-КПД передачи ηп=0,95, для ременной передачи стр80 (л-1)
Расчетная мощность двигателя для вентилятора.
Рр=Кз·Р=1,15·1,3=1,5 кВт (3.97)
где, Кз - коэффициент запаса Кз=1,15 стр80 (л-1)
Для вентилятора выбираем электродвигатель серии RA100L4 с Рн=1,5 кВт Iн=4А
Расчет калорифера.
Определяем мощность калорифера.
Рк=Qк/860·ηк=16191/860·0,9=20,9 кВт (3.98)
где, Q-требуемая калорифера, ккал/ч
ηк-КПД установки ηк=0,9
Теплопередачу установки находят из уравнения теплового баланса помещения.
Qк+Qп=Qо+Qв (3.99)
отсюда
Qк=Qо+Qв-Qп=114744+26047-124600=16191 ккал/ч
где, Qо - теплопотери через ограждения, ккал/ч
Qв-тепло уносимое с вентилируемым воздухом
Теплопотери через ограждения
Qо=ΣК·F· (Vп·Qм) =8·2049· (10-3) =114744 ккал/ч (3.100)
где, К-коэффициент теплопередачи ограждения, ккал/ч К=8 (л-2)
F-площадь ограждений, м² F=2049 (л-3)
Uп - температура воздуха, подведенная в помещение, Uп=+10ºС
Uн - расчетная температура наружного воздуха, Uнм=-3ºС
Тепло, уносимое с вентилируемым воздухом.
Qв=0,237·ν·V (Qп-Uм) =0,239·1,29·12171· (10-3) =26047 ккал/ч (3.101)
где, ν-плотность воздуха, принимаемая равной 1,29 кг/м³ стр.56 (л-1)
V- обьем обогащаемого воздуха за 1 час
V=Vп·Коб=4057·3=12171м³ (3.102)
где, Vп - объем помещения равный 4057м³
Коб - часовая кратность воздухообмена
Тепловыделение в помещение
Qп=g·N=623·200=124600 ккал/ч (3.103)
где, g-количество тепла выделяемого одним животным за 1 час, для коров весом до 500 кг g=623 ккал/ч стр89 (л-1)
N-число коров.
Считаем, что в каждую фазу включены по два нагревательных элемента.
Определяем мощность одного нагревательного элемента.
Рэ=Рк/μ·n=10,4/3·2=1,6 кВт (3.104)
где, n - число нагревателей.
μ - число фаз.
Рабочий ток нагревательного элемента
Iраб=Рэ/Uф=1,6/0,22=7,2 А (3.105)
где, Uф - фазное напряжение.
Принимаем 6 ТЭН мощностью 2 кВт: ТЭН-15/0,5 Т220
Принимаем 2 калорифера СФОЦ-15/0,5Т один из которых устанавливаем в начале комплекса другой в конце
Таблица 3.7. Технические данные калорифера.
Типкалорифера | Мощностькалорифера, кВт | Число секций | Числонагревателей |
СФОЦ-15/0,5Т | 15 | 2 | 6 |
При автоматизации водоснабжения значительно сокращаются затраты на подачу воды потребителям и улучшаются условия труда обслуживающего персонала. Проанализируем водоподъемные установки и выберем наиболее подходящую.
Водоподъемная установка ВУ-5-3ОА.
Предназначена для водоснабжения животноводческих ферм и т.д. с учетом потреблением воды 75…. .90 м3.
В качестве водоисточников могут использоваться шахтные колодцы, открытые и закрытые водоисточники, скважины диаметром не менее 150 мм и динамическим уровнем воды не более 5 м.
Основные узлы: вихревой консольный насос ВК-2/26, гидроаккумулятор, система управления. Станция управления совместно с реле давления обеспечивает работу установки в автоматическом режиме, защиту от токов короткого замыкания, технологических перегрузок и перегрузок, вызванных потерей напряжения в одной из фаз питающей сети, ручное управление работой установки.
Установка снабжена предохранительным клапаном, предназначенным для сброса воды из трубопровода при повышении давления в гидроаккумуляторе выше 0,45 мПа. Водоподъемная установка ВУ-5-ЗОА имеет степень снижения затрат труда 33,3 и эксплуатационные издержки 27,17%.
Водоподъемная установка ВУ-10-ЗОА.
назначение аналогично ВУ-5-ЗОА и водоисточник тоже.
Основные узлы: два вихревых консольных насоса ВК-2/26, все остальные узлы такие же, как и у ВУ-5-ЗОА. Степень снижения затрат труда 27,3 и эксплуатационные издержки 17,47%.
Водоподъемная установка ВУ-16-28.
Предназначена для водоснабжения животноводческих ферм, жилых зданий, учреждений, суточная потребность которых не превышает 190 м3.
Требования к источникам и скважин остаются стандартными.
Основные узлы: центробежный консольный насос 2К-20/30, два гидроаккумулятора вместимостью 0,3 м3, станция управления манометр.
Комплектация станции стандартная, в том числе и защита.
Предохранительный клапан срабатывает также выше 0,45 мПа.
Водоподъемная установка ВУ-10-80.
Назначение аналогично, с суточным потреблением до 150 м3. Водоисточник аналогичен, динамический уровень воды до 60 м.
Основные узлы: электронасос ЭЦВ-10-80, гидроаккумулятор, станция управления. Работа станции и комплектация такая же.
Установка снабжена предохранительным клапаном, срабатывает при повышении давления в гидроаккумуляторе выше 0,45 мПа.
Достоинства конструкции ВУ-10-80 это простота обслуживания, малые габаритные размеры, хорошая монтажная пригодность, надежность работы автоматики, наличие в гидроаккумуляторе разделяющей диафрагмы между водой и воздушной подушкой, что препятствует насыщению воды воздухом. Также можно отнести сюда и достоинство это стоимость подачи воды этими установками в 1,5…2 раза меньше, чем водонапорными башнями.
К недостаткам можно отнести лишь то, что пневматические безбашенные водоподъемные установки могут применяться только при бесперебойном электроснабжении, т.к запас воды в пневмоаккумуляторе мал. (Белянчинков; Смирнов)
Водоподъемник винтовой 1ВЭ-20/3.
Предназначен для водоснабжения животноводческих ферм, пастбищ из шахтных колодцев и скважин с обсадными трубами диаметром не менее 6″ уровнем воды в водоисточнике не менее 700 мм.
Основные узлы: насос, трансмиссия, водоподъемные трубы, электродвигатель, колонка, сливной патрубок.
Одновинтовой насос объемного действия состоит из хромированного однозаходного левого винта с эксцентриситетом 10,8 и шагом 72 мм, корпуса и приемника, навинчивающегося на нижний конец корпуса. В приемнике расположен клапан, удерживающий воду в трубах, находящихся ниже сливного устройства.
Верхняя крышка насоса соединяет его с колонной водоподъемных труб.
Трансмиссия водоподъемника выполнена из валов длиной 1,5 и 1 м, резиновых подшипников и соединительных муфт.
Колонка, предназначена для крепления насоса с водоподъемными трубами и трансмиссией на раме и передачи крутящего момента от электродвигателя, состоит из корпуса, шкива, трубчатого и ведущего валов, мало удерживающие трубки.
Привод органов водоподъемника от асинхронного короткозамкнутого электродвигателя.