3.4.«Вибухова» фотолітографія
Метод вибухової [3] або як її іноді називають «зворотної» фотолітографії дозволяє істотно знизити рівень дефектів.
Сутність методу полягає в тому, що на підкладці створюють маску з фоторезисту, наносять на неї яку-небудь речовину (найчастіше метал) і потім у розчиннику видаляють резист. У результаті залишаються тільки ті ділянки, у яких нанесена речовина потрапила на підкладку. При вибуховій фотолітографії важливо, щоб були розриви між матеріалом, нанесеним на підкладку і на поверхню резиста. У противному випадку або «вибух» не відбудеться, або прийдеться застосовувати примусове видалення, наприклад, впливом ультразвукових коливань. Для того, щоб уникнути з’єднань, необхідно забезпечити дві умови: бічні поверхні резистивної маски повинні бути вертикальними (клин проявлення мінімальний) і матеріал, який наноситься повинний надходити до підкладки під кутом, близьким до прямого. Остання умова виконується при напилюванні металу у вакуумі з резистивним або електронно-променевим випаровувачем, що знаходиться від підкладки на великій відстані (близько 40 см). При реактивному розпиленні, навпаки, матеріал, що осаджується, попадає на підкладку під різними кутами.
Фоторезист наносять шаром, товщина якого повинна складати 2-3 товщини шару металу, який наноситься. Після нетривалого сушіння (при 80° С впродовж 10 хвилин у термостаті; товщина шару близько 2 мкм) експонують, проявляють зображення і створюють у такий спосіб маску. Друге сушіння не проводять, тому що воно приводить до заокруглення країв рельєфу з фоторезисту. По цій же причині необхідно ретельно контролювати температуру підкладки в процесі напилювання.
Основна проблема цього методу фотолітографії - адгезія матеріалу, що осаджується на підкладку. Для того щоб забезпечити гарну адгезію, застосовують різні методи обробки вільних від резиста ділянок поверхні підкладки: іонне травлення, очищення в тліючому розряді, очищення в кисневій плазмі. Останній метод найбільш ефективний, тому що його можна застосовувати майже для будь-яких підкладок і він цілком видаляє органічні забруднення. Обробка пластин кисневою плазмою протягом часу, необхідного для видалення шару резиста товщиною приблизно 10 нм, цілком очищає поверхню .
При використанні для вибухової фотолітографії позитивного резиста видалення маски з нанесеним металом здійснюють в ацетоні, діоксані, диметилформаміді, моноетаноламіні.
3.5.Негативно-позитивна фотолітографія
Метод заснований на застосуванні як негативного, так і позитивного фоторезистів у різних співставленнях. При цьому полегшується операція суміщення і знижується густина дефектів.
Роздільне використання негативного і позитивного фоторезистів в одному процесі засновано на наступних розуміннях: проколи на шаблоні небезпечніші за непрозорі «острівці» через нагромадження їх в процесі експлуатації; на тих операціях фотолітографії, де не допускаються проколи (в окислі), критичні області фотошаблона варто робити прозорими і застосовувати негативний фоторезист; на тих операціях фотолітографії, де не допускаються «острівці» окислу або металу критичні області шаблона варто також виконувати прозорими і застосовувати позитивний фоторезист.
При виготовленні, наприклад, біполярного транзистора фотолітографію бази і емітера можна проводити на позитивному резисті, контактних вікон - на негативному. Так само можна застосовувати негативний резист для фотолітографії під ізолюючу дифузію в інтегральних схемах.
Одночасне використання негативного і позитивного фоторезистів для однієї операції фотолітографії дозволяє створити практично бездефектну захисну маску, тому що резисти виявляються в різних складах проявників, кожний з яких впливає тільки на «свій» шар. Механічні дефекти шарів і дефекти, внесені фотошаблонами, практично не перекриваються, тобто наскрізні проколи повинні бути відсутніми. Спочатку наносять шар позитивного фоторезисту, сушать його, експонують і проявляють. Потім наносять негативний фоторезист, сушать, суміщають зображення, експонують і проявляють. Така двошарова позитивно-негативна фотолітографія з успіхом застосовується при гальванічному осадженні металів[3,4].
ВИСНОВОК
В даній курсовій роботі проведено:
1) детальний огляд наукової літератури по темі “Фізико-технологічні основи фотолітографії”;
2) опис основних фотолітографічних процесів;
Було встановлено, що:
а) фотолітографія застосовується для утворення рельєфу в діелектричних плівках, а також плівках металів, нанесених на поверхню напівпровідника.
б) фотолітографічний метод заснований на тому, що деякі види високомолекулярних сполук мають здатність змінювати свої властивості під дією світла. При умові стійкості плівок цих сполук (фоторезистів) до травників, що застосовуються у процесі фотолітографії, вони можуть бути використані для захисту при формуванні рельєфу.
Можливість створення елементів будь-якої конфігурації, висока відтворюваність розмірів і їхніх розташувань, групова обробка великого числа переходів - такі основні достоїнства фотолітографії.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1.Боков Ю.С. Фото- , електроно- и рентгенорезисты. – М.: Радио и связь,1982. – 136 с.
2.Прищепа М.М., Погребняк В.П. Мікроелектроніка. В 3ч.Ч1. Елементи мікроелектроніки. – К.: Вища школа, 2004. – 431с.
3.Пресс Ф.П. Фотолитографические методы в технологии полупроводниковых приборов и интегральных микросхем. – М.: Сов. Радио,1978. – 96с.
4.Пресс Ф.П. Фотолитография в производстве полупроводниковых приборов. –М.: Энергия,1968. – 200 с.
5.Готра З.Ю., Лопатинський І.Є., Лукіянець Б.А. Фізичні основи електронної техніки.– Львів: Бескид Біт, 2004.– 880 с.
6.Березин Г.Н., Микитин А.В., Сурис Р.А. Оптические основы контактной фотолитографии. – М.: Радио и связь, 1982. – 104с.
7.Проблемы литографии в микроэлектронике. – М.: Наука,1987. –150с.
8.Готра З.Ю. Фізичні основи електронної техніки. – Львів: Видавництво “Львівська політехніка”,2002. – 636с.
9. Лаврищев В.П. Введение в фотолитографию. – М.: Энергия, 1977. – 352с.
10.www.library.distudy.ru/books/technology_of_ms/content.htm.
11.www.compositions.ru./indexphtml?id=15012.
12.www.den.wkau.kz/news11.html.