Смекни!
smekni.com

Явление сверхпроводимости (стр. 2 из 4)

Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля. Прямые измерения теплоёмкости сверхпроводников при Н = 0 показывают, что при понижении температуры теплоёмкость в точке перехода Тк испытывает скачок до величины, которая примерно в 2,5 раза превышает её значение в нормальном состоянии в окрестности Тк. При этом теплота перехода Q = 0, что следует, в частности, из формулы (2) (Нк = 0 при Т = Тк). Т. о., переход из нормального в сверхпроводящее состояние в отсутствии магнитного поля является фазовым переходом 2-го рода. Из формулы (2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой Нк (Т) в точке Т = Тк:

,

где Сс и Сн— значения теплоёмкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.

Температура перехода в сверхпроводящее состояние, критическое магнитное поле для ряда металлов, полупроводников, сплавов и соединений

Вещество Критическая температура ТК, К Критическое поле Н0, э
Сверхпроводники 1 рода Свинец 7,2 800
Тантал 4,5 830
Олово 3,7 310
Алюминий 1,2 100
Цинк 0,88 53
Вольфрам 0,01 1,0
Сверхпроводники 2 рода Ниобий 9,25 4000
Сплав 65 БТ (Nb-Ti-Zr) 9,7 100000
Сплав NiTi 9,8 100000
V3Ga 14,5 350000
Nb3Sn 18,0 250000
(Nb3AI)4Nb3Ge 20,0
Nb3Ge 23
GeTe* 0,17 130
SrTiO3* 0,2—0,4 300
Pb1,0Mo5,1S6 15 600000

* Выше Тк: эти соединения полупроводники. 1 э = 79,6 а/м.

Природа сверхпроводимости

Совокупность экспериментальных фактов о сверхпроводимости убедительно показывает, что при охлаждении ниже Тк проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле — эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта квантования магнитного потока, заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Фо = hc/e*, где е* — заряд носителей сверхпроводящего тока, h — Планка постоянная, с — скорость света. В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что е* = 2e, где е — заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Фо. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (е* = 2e), подтверждает Купера эффект, на основе которого в 1957 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопическую теорию сверхпроводимости согласно Куперу, два электрона с противоположными спинами при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются Бозе-Эйнштейна статистике. Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают бозе - конденсацию, поэтому система куперовских пар обладает свойством сверхтекучести. Т. о., С. представляет собой сверхтекучесть электронной жидкости. При Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 kTk, где k — Больцмана постоянная. При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (фонона), в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее, развитие теории сверхпроводимости стимулировало интенсивные теоретические поиски других механизмов сверхпроводимости. В этом плане особое внимание уделяется нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, — и более высокой температуры перехода в сверхпроводящее состояние. Явления, родственные сверхпроводимости, по-видимому, могут иметь место и в некоторых космических объектах, например в нейтронных звёздах.

Практическое применение сверхпроводимости интенсивно расширяется. Наряду с магнитами сверхпроводящими, сверхпроводящими магнитометрами существует ряд других технических устройств и измерительных приборов, основанных на использовании различных свойств сверхпроводников. Построены сверхпроводящие резонаторы, обладающие рекордно высокой (до 1010) добротностью, сверхпроводящие элементы для ЭВМ, перспективно применение сверхпроводников в крупных электрических машинах и т. д.

Теория БКШ

Сверхпроводимость — вещь странная и, в некоторой мере, даже противоречащая здравому смыслу. Когда электрический ток течет по обычному проводу, то, в результате наличия у провода электрического сопротивления, ток совершает некую работу, направленную на преодоление этого сопротивления со стороны атомов, в результате чего выделяется тепло. При этом каждое соударение электрона — носителя тока — с атомом тормозит электрон, а сам атом-тормоз при этом разогревается — вот почему спираль электрической плитки становится такой красной и горячей. Всё дело в том, что спираль обладает электрическим сопротивлением, и, вследствие этого, при протекании по ней электрического тока, выделяет тепловую энергию (см. Закон Ома).

В 1911 году нидерландский физик-экспериментатор Хейке Камерлинг Оннес (Heike Kammerlingh Onnes, 1853–1926) сделал удивительное открытие. Погрузив провод в жидкий гелий, температура которого составляла не более 4° выше абсолютного нуля (который, напомним, составляет –273°С по шкале Цельсия или –460°F по шкале Фаренгейта), он выяснил, что при сверхнизких температурах электрическое сопротивление падает практически до нуля. Почему такое происходит, он, собственно, не мог даже и догадываться, но факт оказался налицо. При сверхнизких температурах электроны практически не испытывали сопротивления со стороны атомов кристаллической решетки металла и обеспечивали сверхпроводимость.