Найбільше практичне застосування знайшли двопроменеві інтерференційні схеми, основані на використанні плоских дзеркал. У загальному випадку двопроменева інтерференційна схема містить чотири дзеркала (рис. 5). Напівпрозоре дзеркало 1 розділяє падаючий пучок на два. Отримані за допомогою дзеркал 2 і 3 пучки направляються далі на напівпрозоре дзеркало 4, що з'єднує їх в один загальний пучок. Таким чином, по напрямку А чи В можна одержати результат взаємодії двох пучків у вигляді тієї чи іншої інтерференційної картини.
Слід зазначити, що для геометричної побудови вихідної оптичної схеми дзеркального інтерферометра за умови рівності нулю різниці ходу в обох областях і одержання «нескінченно» широкої смуги необхідно дотримуватись такого правила, запропонованого А. А. Забєлін: дзеркала повинні розташовуватися по дотичним і у фокусах (точки F1 i F2 на рис. 5) однією з кривих другого порядку, а їхні напрямки повинні перетинатися в одній загальній точці Q, що називається полюсом інтерферометра.
Рисунок 5- Загальна схема двопроменевого дзеркального інтерферометра
Часткою случаємо еліптичної схеми може служити схема Цендера–Маха-Рождественського (рис. 6, а), у якій вісьові промені утворять прямокутник, а дзеркала розташовані паралельно один одному по його кутах (полюс інтерферометра знаходиться в нескінченності). Якщо дзеркала попарно об'єднати в плоскопаралельнi пластини 1 і 2, то вийде відома схема інтерферометра Жамена (рис. 6, б). Інтерферометр Майкельсона (рис. 6, б) варто розглядати як окремий випадок кругової схеми, у якій розподіл пучків відбувається під кутом 90. У цій схемі лише три дзеркала, а полюс знаходиться на кінцевій відстані. За параболічною схемою будується п¢ятидзеркальна схема, відома як інтерферометр Кестерса (рис. 6, г). Зрештою, найпростіша інтерференційна схема, що складається усього з двох напівпрозорих рівнобіжних дзеркал, названа інтерферометром Фабрі-Перо, відноситься до крапкового (рис. 6, д). Порушення вихідної схеми приводить до утворення смуг кінцевої ширини і виникненню різниці ходу в областях інтерферометра.
Рисунок 6- Схеми двопроменевих дзеркальних інтерферометрів:
а- Цендер-Маха-Рождественського, б- Жамена; в- Майкельсона, г- Кестерса, д- Фабрі-Перо
Найпростіша інтерференційна схема звичайно реалізується у вигляді виготовленої з прозорого матеріалу плоскопаралельної чи клінчастої пластини, на котру падають пучки променів, що мало відкидаються по напрямку від нормалей до поверхонь (рис. 7). Характер інтерференції в пластині (двопроменевої чи багатопроменевої) залежить від коефіцієнта відображення поверхонь. При маленькому значенні коефіцієнта відображення, що характерно для поверхонь звичайних стекол і інших матеріалів у видимій області, інтенсивності пучків після двох відображень сильно розрізняються між собою (особливо в минулому світлі), і практично спостерігається малоконтрастна двопроменева інтерференційна картина. Лише спеціальні дзеркальні покриття поверхонь пластини створюють умови для одержання контрастної багатопроменевої інтерференційної картини. Оптичну різницю ходу, що виникає між сусідніми променями у відбитому чи минулому світлі (без урахувань фазових змін на поверхнях), для плоскопаралельної пластини визначають за формулою
D = 2dncose¢, (5)
де d- товщина пластини; n- відносний показник переломлення матеріалу пластини і навколишнього середовища; e'- кут переломленого променя в пластині.
Рисунок 7- Поділ променів у пластині
І- відбиті промені, ІІ- минулі промені
З формули (5) видно, що на різницю ходу інтерферуючих променів можна впливати шляхом вибору кута чи нахилу падаючих променів зміною оптичної товщини пластини.
У залежності від цього розрізняють два основних типи інтерференційних смуг - смуги рівного нахилу і смуги рівної товщини. Розглянемо особливості кожного типу інтерференційних смуг.
Рисунок 8- Інтерференційна схема для одержання смуг рівного нахилу
Смуги рівного нахилу можна одержати на установці (рис. 8, а), що складається з протяжливого джерела 1, від якого промені падають як нормально, так і під невеликим кутом нахилу e на плоскопаралельну пластину 2.
Відповідні за нахилом пучки променів, відбиті від першої і другої поверхонь пластини 5, за допомогою напівпрозорої допоміжної пластини 2 направляються на фокусуючу лінзу 3, що збирає їх з різних місць екрана Найбільша різниця ходу виникає для променів, що падають нормально на пластину і збирають лінзу в центрі О екрана. В інших місцях екрана різниця ходу буде тим менша, чим більший кут падіння променів e на пластину. У підсумку виникає інтерференційна картина у формі концентричних кілець (рис. 8, б), порядок m яким поступово зменшується в міру зростання радіусів кілець Rk. від центра до країв екрана. Для різниці ходу в центрі екрана D0 і кільця з номером k можна написати:
D0 = (m + q)l = 2dn;
Dk = [m – (k – 1)]l = 2dn cos e¢;
D0 - Dk = 2dn (1 – cos e¢) = (k – 1 + q)l,
де k- порядковий номер кільця, відлічений від центра екрана; q- дробова частина m для нормального падіння променів на пластину. З огляду на маленькі кути e, одержимо
1 – cose¢k»e2k/2n2.
У підсумку для кутової ширини радіуса k-го кільця одержимо
eк »
Якщо пластина підібрана так, що q = 1, то
eh »
Кутова ширина смуги з номером k:
dek = ek+1 - ek »
(6)