Смекни!
smekni.com

Классический метод расчета переходных процессов в линейных цепях (стр. 4 из 5)

,

при

Графики имеют в этом случае точно такой же вид, как и в предыдущем случае, но в первом случае процессы идут медленнее, чем во втором. Этот случай называется критическим переходным процессом.

3) R < Rкр

,
,

т.е. при α→ 0 ωc стремится к резонансной частоте данной цепи.

Решение запишется в виде:

(классический метод)

(1) в (2):

(1)/(3):

, из (3)

Видно, что в данном случае свободная составляющая представляет собой затухающую во времени синусоиду. Такой переходной процесс называется колебательным или периодическим, и график его проще построить так: симметрично относительно принуждённой составляющей строим график амплитуды свободной составляющей (график огибающей процесса), дальше в график огибающей вписывают синусоиду с её начальной фазой и периодом свободных колебаний.

,
- коэффициент затухания,

- частота свободных колебаний.

Рассматривать цепи более высокого порядка смысла нет, потому что у любого уравнения корни могут быть трёх видов, а для каждого типа корней мы свободную составляющую уже получили.

5. Временные характеристики цепей

Ранее мы рассматривали частотные характеристики, а временные характеристики описывают поведение цепи во времени при заданном входном воздействии. Таких характеристик всего две: переходная и импульсная.

Переходная характеристика

Переходная характеристика - h(t) - есть отношение реакции цепи на входное ступенчатое воздействие к величине этого воздействия при условии, что до него в цепи не было ни токов, ни напряжений.

Ступенчатое воздействие имеет график:

1(t) – единичное ступенчатое воздействие.


Иногда используют ступенчатую функцию, начинающуюся не в момент «0»:

Для расчёта переходной характеристики к заданной цепи подключают постоянный ЭДС (если входное воздействие – напряжение) или постоянный источник тока (если входное воздействие – ток) и рассчитывают заданный в качестве реакции переходный ток или напряжение. После этого делят полученный результат на величину источника.

Пример: найти h(t) для ucпри входном воздействии в виде напряжения.

1)

,

2)

,

3)

,
,

,

,

Пример: ту же задачу решить при входном воздействии в виде тока

1)

,

2)

,

3)

,
,

,

,

Импульсная характеристика

Импульсная характеристика - g(t) – есть отношение реакции цепи на входное воздействие в виде дельта - функции к площади этого воздействия при условии, что до подключения воздействия в схеме не было ни токов, ни напряжений.

δ(t) – дельта-функция, дельта-импульс, единичный импульс, импульс Дирака, функция Дирака. Это есть функция:

Рассчитывать классическим методом g(t) крайне неудобно, но так как δ(t) формально является производной

, то найти её можно из соотношения g(t)=h(0)δ(t) + dh(t)/dt.

Для экспериментального определения этих характеристик приходится действовать приближённо, то есть создать точное требуемое воздействие невозможно.

На вход падают последовательность импульсов, похожих на прямоугольные:

tф – длительность переднего фронта (время нарастания входного сигнала);

tи – длительность импульса;

К этим импульсам предъявляют определённые требования:

а) для переходной характеристики:

- tпаузы должно быть таким большим, чтобы к моменту прихода следующего импульса переходный процесс от окончания предыдущего импульса практически заканчивался;

- tи должно быть таким большим, чтобы переходный процесс, вызванный возникновением импульса, тоже практически успевал заканчиваться;

- tф должно быть как можно меньше (так, чтобы за tср состояние цепи практически не менялось);

- Xm должна быть с одной стороны такой большой, чтобы с помощью имеющейся аппаратуры можно было бы зарегистрировать реакцию цепи, а с другой: такой маленькой, чтобы исследуемая цепь сохраняла свои свойства. Если всё это так, регистрируют график реакции цепи и изменяют масштаб по оси ординат в Xm раз (Xm =5В, ординаты поделить на 5).

б) для импульсной характеристики:

tпаузы – требования такие же и к Xm – такие же, к tф требований нет (потому что даже сама длительность импульса tф должна быть такой малой, чтобы состояние цепи практически не менялось. Если всё это так, регистрируют реакцию и изменяют масштаб по оси ординат на площадь входного импульса

.

Итоги по классическому методу

Основным достоинством является физическая ясность всех используемых величин, что позволяет проверять ход решения с точки зрения физического смысла. В простых цепях удаётся очень легко получить ответ.

Недостатки: по мере возрастания сложности задачи быстро нарастает трудоёмкость решения, особенно на этапе расчёта начальных условий. Не все задачи удобно решать классическим методом (практически никто не ищет g(t), и у всех возникают проблемы при расчёте задач с особыми контурами и особыми сечениями).

До коммутации

,
.

Следовательно, по законам коммутации uc1(0) = 0 и uc2(0) = 0, но из схемы видно, что сразу после замыкания ключа: E= uc1(0)+uc2(0).

В таких задачах приходится применять особую процедуру поиска начальных условий.

Эти недостатки удаётся преодолеть в операторном методе.

6. Расчет реакции линейной цепи на входное воздействие произвольного вида с применением временных характеристик цепи

Раньше мы рассматривали два вида входного воздействия: