Сами рассеянные поля находят решая задачу о рассеянии на маскирующей оболочке, где, как уже упоминалось, используется БПФ. Графики распределения нормированной амплитуды электрического поля (2.2.1, 2.3.1) строят по решению, полученному в задаче о рассеянии.
В связи с тем, что преобразования метрики не затрагивают временной составляющей, фазы каждого луча в оригинальной и преобразованной системах будут равны между собой.
Таким образом, для маскировки обтеканием нужно использовать анизотропные градиентные материалы с компонентами проницаемостей меньшими единицы, или – в некоторых случаях – отрицательными. Тот факт, что в анизотропной среде отсутствуют двулучепреломление и не изменяется поляризация попадающего в неё излучения объясняется равенством
Можно заметить, что к скрытию путём волнового обтекания могла бы приводить и антигравитация. Антигравитация, исходящая от какого либо тела, вызывает такие преобразования метрики пространства, что геодезические линии как бы раздвигаются.
Тот же принцип движения луча по искривлённой траектории объясняет и такое явление как мираж. Существенное отличие в температурах воздуха у поверхности земли и в более высоких слоях вызывает различие показателей преломления, вследствие чего свет распространяется не прямолинейно, а по кривой, и мы можем видеть объекты, расположенные за линией горизонта.
2.2 Свойства маскирующих покрытий и требования, предъявляемые к ним
Первое моделирование обтекания было проведено Каммером С.А. [5] в бесконечно длинной цилиндрической оболочке кругового сечения. Картина взаимодействия линейно поляризованной волны, вектор
Реальные покрытия имеют слоистую структуру, т.е. являются дискретными, что вызывает рассеяние, из-за которого траектории лучей вне оболочки перестают быть прямолинейными (рис. 2.2.1 б).
Идеальные параметры, использованные при построении графика 2.2.1а можно упростить. Если вектор
В маскирующем покрытии также присутствует частотная дисперсия
Распределение нормированной амплитуды электрического поля вблизи цилиндрической маскирующей оболочки
2.3 Разнообразие форм маскирующих покрытий
Сейчас скрытие уже теоретически осуществимо на оболочках произвольной двумерной формы, а именно в сечении трёхмерной модели. Рассмотрим их классификацию. Изначально рассматриваемый метод, как уже упоминалось, базировался на сферической оболочке (см. гл. 2 § 1). Дальнейшее развитие метода, как и следовало ожидать, привело к появлению многих других форм.
Одно из простейших покрытий с формой эллиптического цилиндра рассмотрено в работе [6].
Распределение нормированной амплитуды электрического поля для различных углов падения излучения на эллиптическую оболочку: (а) 0°, (б) 90°, (в) 30°, (г) 45°
Для расчета его параметров используется линейное преобразование координат эллиптического цилиндра
Направление падающего излучения для такой оболочки не безразлично из-за меньшей степени симметрии чем, например, у сферы. Из рисунка 2.3.1 видно, что поле после прохождения препятствия имеет наиболее близкую исходному структуру при нулевом угле падения излучения.
Произвольный цилиндр – оболочка-цилиндр с произвольным сечением. В общем случае не существует преобразования, переводящего произвольную односвязную область в подобную ей двусвязную. В таком случае
Для разбиения гладких оболочек на сектора их аппроксимируют кривыми Безье второго порядка. Эти кривые могут представлять собой любые канонические сечения (эллипсы, параболы, гиперболы), в зависимости от параметров. Для того чтобы достаточно точно аппроксимировать гладкую кривую, потребуется ломанная, состоящая из нескольких сотен отрезков, а кривых может понадобиться и две, как, например, для аппроксимации формы сердца. Параметрические уравнения кривой второго порядка по трём точкам
Кроме уже исследованной сферической формы оболочки из трёхмерных моделей появилась ещё и модель эллипсоида вращения [8]. Пока решения задачи о рассеянии на оболочках произвольной формы не найдено, что связано с трудностями моделирования таких задач.
Координатное преобразование для цилиндрической оболочки квадратного сечения: для каждого сектора, выделенного на рисунке а, делается своё преобразование координат
Заключение
Итак, определившись с преобразованием координат для маскирующей оболочки, находим распределение её параметров
В дальнейшем хотелось бы смоделировать решение для определённой оболочки, рассчитав её параметры, построить графики решений для этих оболочек. В дальней перспективе – написать программу, рассчитывающую сами поля, имея в качестве входящих значений параметры оболочки. Включить в неё функцию построения графиков решений. Подбирать оболочки и варьировать их параметры в поисках наиболее удачных.
Список литературы
1. Leung Tsang, Jin Au Kong, Kung-Hau Ding «Scattering of electromagnetic waves: theories and applications», «A Wiley-lnterscience» (2000);
2. W.H. Press, S.A. Teukolsky, W.T. Vetterling, Cambridge university press, New York (2002);
3. Pendry J B, Schurig D, Smith D R Science 312 1780 (2006);
4. А.Е. Дубинов, Л.А. Мытарева «Маскировки материальных объектов методом волнового обтекания», УФН (май 2010);
5. Cummer S A et al. Phys. Rev. E 74 036621 (2006);
6. Ma H et al. Phys. Rev. A 77 013825 (2008);
7. Rahm Met al. Photon. Nanostruct. Fund. Appl. 6 87 (2008);
8. Luo Y et al. Phys. Rev. B 78 125108 (2008);
9. A VNovitsky, «Matrix approach for light scattering by bianisotropic cylindrical particles», J. Phys.: Condens. Matter 19(2007);
10. Г. Нуссбаумер, «Быстрое преобразование Фурье и алгоритмы вычисления свёрток», Москва, «Радио связь» (1985);