Смекни!
smekni.com

Расчет электрической цепи (стр. 2 из 3)

Составить баланс мощностей

Комплексная мощность источника

;

Активная мощность цепи равна суммарной мощности потерь в резисторах:

.

Реактивная мощность цепи


.

Видно, что баланс мощностей сошелся:

.

.

Напряжения на фазах нагрузки:

;

;

;

;

Токи:

Построить в масштабе векторную диаграмму токов и потенциальную топографическую диаграмму напряжений,

,
.

,
,
,

,

,
,

Все вектора строятся на комплексной координатной плоскости.

Можно сначала построить вектора напряжений в ветвях, а потом провести вектор из начала координат в точку, в которой сойдутся напряжения ветвей, этот вектор должен соответствовать вектору напряжения смещения нормали. Проводим вектор

так, чтоб он заканчивался в конце вектора
, проводим вектор
так, чтоб он заканчивался в конце вектора
. Проводим вектор
так, чтоб он заканчивался в конце вектора
. Проводим вектор
так, чтоб он заканчивался в конце вектора
.

Векторы

,
,
, начинаются из одной точки.

Проведем из этой точки вектор в начало координат и у нас получится вектор напряжение смещения нейтрали

. Вектора токов строим из начала координат.

По диаграмме можно определить напряжение нейтрали:

или

3. Расчет переходных процессов в линейных электрических цепях с сосредоточенными параметрами, включенных на постоянное напряжение

Дана схема

Решение

1. Установившийся режим до коммутации. Имеет место установившийся режим постоянных токов

;
;

;

При t = 0–

,
.

Дифференциальные уравнения описывают токи и напряжения с момента времени t = 0+.

Принужденные составляющие находятся для установившегося режима, наступающего после переходного процесса.


Определение корней характеристического уравнения. Входное комплексное сопротивление переменному току схемы для послекоммутационного состояния.

Заменяя далее j w на р и приравнивая полученный результат к нулю, получаем


Характеристическое уравнение имеет корни:

,

Следовательно, имеет место апериодический переходный режим.

Определение постоянных. В результате расчета получены следующие выражения для неизвестных:

На этом этапе система диф. уравнений записывается для момента времени t = 0+ и после подстановки параметров с учетом равенств

получаем: