Смекни!
smekni.com

Электроснабжение компрессорной станции (стр. 5 из 8)

Iд=80 А.

Определяем допустимую величину тока с учётом поправочных коэффициентов

Iд'=Iд·Kп·Kт,

где Kп – поправочный коэффициент на параллельную прокладку двух кабелей

в траншее, принимаемый по каталогу по [4, таблица 1.3.26], Kп=0,9;

Kт – поправочный коэффициент на температуру земли, принимаемый по каталогу [4, таблица 1.3.3], Kт=1, т.к. принята температура t=15 ºC.

Iд'=80·0,9·1=72 А > Im(10)=22,6 А.

По справочнику [7, таблица 4-79] определяем активное (r0) и реактивное (х0) сопротивления кабельной линии, Ом/км

r0=1,95 Ом/км,

х0=0,113 Ом/км.

Проверяем выбранный кабель по потере напряжения ∆U, %, которые согласно [8] не должны превышать 5%

∆U=

,

∆U=

=0,59% .

Параметры кабеля заносим в таблицу 5.

Таблица 5 – Параметры кабеля

Uн, кВ Im(10), А Марка и сечение кабеля Iд′, А r0, Ом/км x0, Ом/км l, км ΔU, %
10 22,6 ААШв 3×16 72 1,95 0,113 0,8 0,59

ААШв – кабель с алюминиевыми жилами, с бумажной изоляцией, алюминиевая оболочка, в поливинилхлоридном шланге.

Итак, кабель выбранный по экономической плотности тока обеспечивает снижение сопротивления кабеля, возможность расширения производства, а также запас по току, что ведет к снижению эксплуатационных затрат, т.к кабель нагревается значительно меньше, обеспечивая, тем самым, меньший физический износ изоляции, а как следствие меньшее число повреждений и пробоев.


9. Расчёт и выбор питающих сетей напряжением до 1 кВ

Согласно [4, пункт 1.3.20] проверке по экономической плотности тока не подлежат: сети промышленных предприятий и сооружений напряжением до 1 кВ при числе использования максимума нагрузки предприятий до 4000-5000; сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений; ответвления к отдельным электроприёмникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий.

Т.к. шины не входят в перечень [4, пункт 1.3.28], то выбор осуществляем по току с условием, что Iд≥Imц с проверкой по потере напряжения и на действие токов короткого замыкания.

В результате расчёта электрических нагрузок максимальный ток Imц=1321,8 А.Т.к. ток проходящий по одной секции Im=660,9 А, то принимаем к предварительной установке шину алюминиевую сечением 50×6 с Iд=740А по каталогу [6,таблица 1.3.31].

Согласно [4, пункт 1.3.23] при расположении шин плашмя ток, указанный в справочнике [4, таблица 1.3.31], должен быть уменьшен на 5 %, если ширина шины до 60 мм и на 8 %, если ширина шины больше 60 мм.

Iд′ = 740-0,05·740 = 703 А > Im=660,9 А.

По справочнику [7, таблица 4-79] определяем активное (r0) и реактивное (х0) сопротивления шины, Ом/км

х0=0,137 Ом/км,

r0=0,119 Ом/км.

Проверяем выбранную шину по потере напряжения ∆U, %, при длине шины l =0,005 км

∆U= Im1c·l·( r0·cosφсрв+ х0·sinφсрв),

∆U%=

·100%,

∆U= 660,9·0,005·(0,119·0,83+0,137·0,55) =0,57 В,

∆U%=

·100=0,3 % ≤ 1,8%.

Т.к. Iд′ = 703 А > ImIс = 669,9 А; ΔU% = 0,5 % < 1,8 %, то принимаем шину к предварительной установке. Окончательное решение будет принято после проверки шины на термическое и динамическое действие токов короткого замыкания.

Выбор кабельных сетей, идущих к силовым шкафам.

В результате расчёта электрических нагрузок шкафа ШР1 Imшр1= 48,8 А. Т.к. согласно [4, пункт 1.3.28] сети напряжением до 1 кВ не подлежат проверке по экономической плотности тока при Tm ≤ 5 тыс. час/год, то выбор осуществляем по току с условием, что Iд ≥ Imшр1, с проверкой по потере напряжения и на установленную защитную аппаратуру.

Определяем ток расцепителя автоматического выключателя Iрасц, А

Iрасц = Kп1·Imшр1,

где Кп1 – поправочный коэффициент учитывающий неточность калибровки расцепителя и одновременный запуск всех потребителей шкафа, принимаем Кп1 = 1,25.

Iрасц = 1,25·48,8 = 61 А.

Принимаем к установке автоматический выключатель ВА 13-29

по каталогу [9]

Принимаем к предварительной прокладке кабель АВВГ 4×25 с Iд = 75·0,92 = 69 А по справочнику [4, таблица 1.3.7]

Проверяем кабель на установленную защитную аппаратуру по условию

Iд′ ≥ Iз · Кз ,

где Iз – ток срабатывания защиты, равный току расцепителя, А,

принимаем Iз = 63 А;

Кз – коэффициент защиты, зависящий от вида защитной аппаратуры, изоляции кабеля, среды в помещении и необходимости защиты кабеля от перегрузки, принимаем Кз = 1по [3, таблица 2.10].

Iд′ = 69 А > (63 · 1) А,

r0 = 1,25 Ом/км,

x0 = 0,0662 Ом/км.

Проверяем выбранный кабель по потере напряжения ∆U, %, при длине кабеля l=0,015 км

,

∆U=

· 28,4 · 0,015 · (1,25 + 0,0662 · 0,53) = 0,38% ≤ 5%

Т.к. Iд′ ≥ Imшр1, Iд′ ≥ Iз · Кз, ∆U ≤ 5%, то кабель принимаем к окончательной прокладке. Аналогичным образом выбираем кабели, идущие к остальным шкафам. Все полученные данные сводим в таблицу 7.

Выбор кабелей идущих к одиночным электроприёмникам

Т.к. сети, идущие к одиночным электроприёмникам, не подлежат проверке по экономической плотности тока, то выбор ведём по номинальному току электроприёмника Iн, А.

Определяем номинальную силу тока двигателя компрессора, позиция 1 Iн1, А

Iн1 =

,

где η – коэффициент полезного действия двигателя.

Iн1 =

= 41,27 А.

Определяем ток расцепителя автоматического выключателя Iрасц, А

Iрасц = Kп2 · Iн1,

где Kп2 – коэффициент, учитывающий неточность калибровки расцепителя и пусковые токи двигателя, принимаем Kп2 = 1,15

Iрасц = 1,15 · 41,27 = 47,5 А.

Принимаем к установке автоматический выключатель ВА 13-29

[8]

Принимаем к прокладке кабель АВВГ 4×16 с Iд′= 60 · 0,92 = 55 А по каталогу [4, таблица 1.3.7]

Iд′ = 55 А ≥ Iн = 41,27 А.

Проверяем кабель на установленную защитную аппаратуру по условию

Iд′ ≥ Iз · Kз,

Iд′ = 55 А ≥ (50 · 1) А. r0 = 1,95 Ом/км;

x0 = 0,0675 Ом/км [7, таблица 4-79],

∆U =

·22·0,01·(1,95+0,0675·0,48) = 0,3% ≤ 5% .

Т.к. Iд′ ≥ Iн, Iд′ ≥ Iз · Kз, ∆U ≤ 5%, то кабель принимаем к окончательной прокладке.

Аналогичным способом выбираем кабели идущие к остальным электроприёмникам. Полученные данные сводим в таблицу 8.

Выбираем кабель идущий к вентилятору, позиция 2, защищаемому предохранителем

Рассчитываем силу тока двигателя вентилятора Iн2, А

Iн2 =

= 1,2 А.

Определяем ток плавкой вставки предохранителя, А


,

где kп – кратность пускового тока,

принимаем kп =5;

α – коэффициент снижения пускового тока,

принимаем α =2,5 (при легких пусках).

Iвст =

= 2,4 А.

Для защиты двигателя вентилятора принимаем к установке предохранитель ПП 21

по каталогу [3,таблица 2.21].

Принимаем к предварительной прокладке кабель АВВГ 4×2,5 с Iд′= 19 · 0,92 = 18 А [4, таблица 1.3.7].

Iд′ = 18 А ≥ Iн = 1,2 А

Проверяем кабель на установленную защитную аппаратуру по условию

Iд′ ≥ Iз · Kз,

Iд′ = 18 А ≥ (5 · 0,33)=1,65 А,

ro = 12,5 Ом/км,

xo = 0,104 Ом/км,

∆U =

· 0,37 · 0,011 · (12,5 + 0,104 · 1,04) = 0,04% ≤ 5%.

Т.к. Iд′ ≥ Iн, Iд′ ≥ Iз · Kз, ∆U ≤ 5%, то кабель принимаем к окончательной прокладке.


10. Расчёт токов короткого замыкания

В электроустановках могут возникать различные виды коротких замыканий, сопровождающиеся резким увеличением тока. Поэтому электрооборудование, устанавливаемое в системах электроснабжения, должно быть устойчивым к токам короткого замыкания и выбираться с учётом величин этих токов. Основными причинами возникновения коротких замыканий в сети могут быть: повреждение изоляции отдельных частей электроустановки; неправильные действия обслуживающего персонала; перекрытие токоведущих частей.

Вычисление токов короткого замыкания производится для определения условий работы потребителей при аварийных режимах; выбора электроаппаратов, шин, изоляторов, силовых кабелей; проектирования и настройки устройств релейной защиты и автоматики; проектирования защитных заземлений; подбора характеристик разрядников для защиты от перенапряжений.

При расчёте токов КЗ принимают, что источниками питания места КЗ являются: синхронные генераторы, синхронные компенсаторы и двигатели, асинхронные двигатели в начальный период времени.