= 414
10 6,26=2,6 10 (Дж)V
= = =0,16 (В)3. Расчет толщины слоя объемного заряда
Для определения вида функции j (x), характеризующей изменение потенциальной энергии электрона при переходе его из n- в p-область (или дырки при переходе ее из p- в n-область), воспользуемся уравнением Пуассона
= r (x), (3.1)в котором r (x) представляет собой объемную плотность зарядов, создающих поле. Будем полагать, что донорные и акцепторные уровни ионизированы полностью и слой d
покинули практически все электроны, а слой d – все дырки. Тогда для области n (x>0) r (x) »qN »qn , для области p (x<0) ) r (x) » - qN » -qp . Подставляя это в (3.1), получаем = N для x>0, (3.2) = N для x<0. (3.3)Так как на расстояниях x£d
и x³- d контактное поле в полупроводнике отсутствует, то граничными условиями для этих уравнений являются :j (x) ½
=0, j (x) ½ =j ; (3.4) ½ =0, ½ =0. (3.5)Решение уравнений (3.2) и (3.3) с граничными условиями (3.4) и (3.5) приводит к следующим результатам:
j=
N (d - x) для 0<x< d , (3.6)j=j
- N (d + x) для - d <x<0, (3.7)d=
= , (3.8)d
/d =N /N , (3.9)Из уравнений (3.6) и (3.7) видно, что высота потенциального барьера j (x) является квадратичной функцией координаты x. Толщина слоя объемного заряда согласно (3.8) тем больше, чем ниже концентрация основных носителей, равная концентрации легирующей примеси. При этом глубина проникновения контактного поля больше в ту область полупроводника, которая легирована слабее. При N
<<N , например, практически весь слой локализуется в n-области:d»d
= = . (3.10)Произведенный расчет толщины слоя объемного заряда относится к резкому p–n-переходу, в котором концентрация примесей меняется скачкообразно. Рассчитаем толщину слоя объемного заряда резкого p–n-перехода при 300 К.
d=
= = = =5,26 10 (см)4. Расчет барьерной емкости
Электронно–дырочный переход обладает барьерной, или зарядовой, емкостью, связанной с изменением величины объемного заряда p–n-перехода под влиянием внешнего смещения.
Толщина слоя объемного заряда d перехода связана с высотой потенциального барьера j
= qV соотношением (3.8) (или (3.10) для несимметричного перехода). Поэтому повышение потенциального барьера p–n-перехода при обратном смещении происходит за счет расширения слоя объемного заряда.При прямом смещении потенциальный барьер p–n-перехода уменьшается за счет суждения слоя объемного заряда.
Для асимметричного p–n-перехода, например, в том и другом случае толщина слоя объемного заряда определяется соотношением, аналогично (3.10):
d =
= , (4.1)Здесь V>0 при прямом и V<0 при обратном смещении.
Установление стационарного состояния при наличии смещения происходит следующим образом. Обратное смещение V, приложенное к полупроводнику, создает в n- и p-областях внешнее поле Е
, вызывающее дрейф основных носителей к омическим контактам, с помощью которых полупроводник подключается в цепь. Отток основных носителей от p–n-перехода приводит к обнажению новых слоев ионизированных доноров и акцепторов и расширению области объемного заряда. Этот процесс продолжается до тех пор, пока все внешнее смещение V не окажется приложенным к p–n-переходу.Прямое смещение вызывает приток основных носителей к области объемного заряда, в результате которого заряды, созданные внешним источником э.д.с. на омических контактах, переносятся к p–n-переходу и сужают его.
После установления стационарного состояния практически все напряжение V падает на p–n-переходе, так как его сопротивление на много порядков выше сопротивления остальных областей полупроводника.
Таким образом, приложенное к p–n-переходу внешнее напряжение вызывает появление в первый момент времени импульса тока во внешней цепи, приводящего, в конечном счете, к увеличению или уменьшению объемного заряда p–n-перехода. Поэтому переход ведет себя как емкость. Ее называют барьерной, или зарядовой, емкостью, так как она связана с изменением потенциального барьера p–n-перехода. При подаче на переход обратного смещения барьерная емкость заряжается, при подаче прямого смещения – разряжается.
Величину барьерной емкости можно вычислять по формуле плоского конденсатора
С
= S/d, (4.2)